DetectionUtil.cpp 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DetectionUtil.h"

namespace paddle {

size_t appendWithPermute(const MatrixPtr inMatrix,
                         size_t height,
                         size_t width,
                         size_t outTotalSize,
                         size_t outOffset,
                         size_t batchSize,
                         MatrixPtr outMatrix,
                         PermMode permMode,
                         bool useGpu) {
  if (permMode == NCHWTONHWC) {
    size_t inElementCnt = inMatrix->getElementCnt();
    size_t channels = inElementCnt / (height * width * batchSize);
    size_t imgSize = height * width;
    for (size_t i = 0; i < batchSize; ++i) {
      size_t offset = i * (outTotalSize / batchSize) + outOffset;
      const MatrixPtr inTmp =
          Matrix::create(inMatrix->getData() + i * channels * imgSize,
                         channels,
                         imgSize,
                         false,
                         useGpu);
      MatrixPtr outTmp = Matrix::create(
          outMatrix->getData() + offset, imgSize, channels, false, useGpu);
      inTmp->transpose(outTmp, false);
    }
    return channels * imgSize;
  } else {
    LOG(FATAL) << "Unkown permute mode";
  }
}

size_t decomposeWithPermute(const MatrixPtr inMatrix,
                            size_t height,
                            size_t width,
                            size_t inTotalSize,
                            size_t inOffset,
                            size_t batchSize,
                            MatrixPtr outMatrix,
                            PermMode permMode,
                            bool useGpu) {
  if (permMode == NHWCTONCHW) {
    size_t outElementCnt = outMatrix->getElementCnt();
    size_t channels = outElementCnt / (height * width * batchSize);
    size_t imgSize = height * width;
    for (size_t i = 0; i < batchSize; ++i) {
      size_t offset = i * (inTotalSize / batchSize) + inOffset;
      const MatrixPtr inTmp = Matrix::create(
          inMatrix->getData() + offset, imgSize, channels, false, useGpu);
      MatrixPtr outTmp =
          Matrix::create(outMatrix->getData() + i * channels * imgSize,
                         channels,
                         imgSize,
                         false,
                         useGpu);
      inTmp->transpose(outTmp, false);
    }
    return channels * imgSize;
  } else {
    LOG(FATAL) << "Unkown permute mode";
  }
}

real jaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2) {
  if (bbox2.xMin > bbox1.xMax || bbox2.xMax < bbox1.xMin ||
      bbox2.yMin > bbox1.yMax || bbox2.yMax < bbox1.yMin) {
    return 0.0;
  } else {
    real interXMin = std::max(bbox1.xMin, bbox2.xMin);
    real interYMin = std::max(bbox1.yMin, bbox2.yMin);
    real interXMax = std::min(bbox1.xMax, bbox2.xMax);
    real interYMax = std::min(bbox1.yMax, bbox2.yMax);

    real interWidth = interXMax - interXMin;
    real interHeight = interYMax - interYMin;
    real interSize = interWidth * interHeight;

    real bboxSize1 = bbox1.getSize();
    real bboxSize2 = bbox2.getSize();

    return interSize / (bboxSize1 + bboxSize2 - interSize);
  }
}

vector<real> encodeBBoxWithVar(const NormalizedBBox& priorBBox,
                               const vector<real> priorBBoxVar,
                               const NormalizedBBox& gtBBox) {
  real priorBBoxWidth = priorBBox.getWidth();
  real priorBBoxHeight = priorBBox.getHeight();
  real priorBBoxCenterX = priorBBox.getCenterX();
  real priorBBoxCenterY = priorBBox.getCenterY();

  real gtBBoxWidth = gtBBox.getWidth();
  real gtBBoxHeight = gtBBox.getHeight();
  real gtBBoxCenterX = gtBBox.getCenterX();
  real gtBBoxCenterY = gtBBox.getCenterY();

  vector<real> offsetParam;
  offsetParam.push_back((gtBBoxCenterX - priorBBoxCenterX) / priorBBoxWidth /
                        priorBBoxVar[0]);
  offsetParam.push_back((gtBBoxCenterY - priorBBoxCenterY) / priorBBoxHeight /
                        priorBBoxVar[1]);
  offsetParam.push_back(std::log(std::fabs(gtBBoxWidth / priorBBoxWidth)) /
                        priorBBoxVar[2]);
  offsetParam.push_back(std::log(std::fabs(gtBBoxHeight / priorBBoxHeight)) /
                        priorBBoxVar[3]);

  return offsetParam;
}

NormalizedBBox decodeBBoxWithVar(const NormalizedBBox& priorBBox,
                                 const vector<real>& priorBBoxVar,
                                 const vector<real>& locPredData) {
  real priorBBoxWidth = priorBBox.getWidth();
  real priorBBoxHeight = priorBBox.getHeight();
  real priorBBoxCenterX = priorBBox.getCenterX();
  real priorBBoxCenterY = priorBBox.getCenterY();

  real decodedBBoxCenterX =
      priorBBoxVar[0] * locPredData[0] * priorBBoxWidth + priorBBoxCenterX;
  real decodedBBoxCenterY =
      priorBBoxVar[1] * locPredData[1] * priorBBoxHeight + priorBBoxCenterY;
  real decodedBBoxWidth =
      std::exp(priorBBoxVar[2] * locPredData[2]) * priorBBoxWidth;
  real decodedBBoxHeight =
      std::exp(priorBBoxVar[3] * locPredData[3]) * priorBBoxHeight;

  NormalizedBBox decodedBBox;
  decodedBBox.xMin = decodedBBoxCenterX - decodedBBoxWidth / 2;
  decodedBBox.yMin = decodedBBoxCenterY - decodedBBoxHeight / 2;
  decodedBBox.xMax = decodedBBoxCenterX + decodedBBoxWidth / 2;
  decodedBBox.yMax = decodedBBoxCenterY + decodedBBoxHeight / 2;

  return decodedBBox;
}

void getBBoxFromPriorData(const real* priorData,
                          const size_t numBBoxes,
                          vector<NormalizedBBox>& bboxVec) {
  size_t outOffset = bboxVec.size();
  bboxVec.resize(bboxVec.size() + numBBoxes);
  for (size_t i = 0; i < numBBoxes; ++i) {
    NormalizedBBox bbox;
    bbox.xMin = *(priorData + i * 8);
    bbox.yMin = *(priorData + i * 8 + 1);
    bbox.xMax = *(priorData + i * 8 + 2);
    bbox.yMax = *(priorData + i * 8 + 3);
    bboxVec[outOffset + i] = bbox;
  }
}

void getBBoxVarFromPriorData(const real* priorData,
                             const size_t num,
                             vector<vector<real>>& varVec) {
  size_t outOffset = varVec.size();
  varVec.resize(varVec.size() + num);
  for (size_t i = 0; i < num; ++i) {
    vector<real> var;
    var.push_back(*(priorData + i * 8 + 4));
    var.push_back(*(priorData + i * 8 + 5));
    var.push_back(*(priorData + i * 8 + 6));
    var.push_back(*(priorData + i * 8 + 7));
    varVec[outOffset + i] = var;
  }
}

void getBBoxFromLabelData(const real* labelData,
                          const size_t numBBoxes,
                          vector<NormalizedBBox>& bboxVec) {
  size_t outOffset = bboxVec.size();
  bboxVec.resize(bboxVec.size() + numBBoxes);
  for (size_t i = 0; i < numBBoxes; ++i) {
    NormalizedBBox bbox;
    bbox.xMin = *(labelData + i * 6 + 1);
    bbox.yMin = *(labelData + i * 6 + 2);
    bbox.xMax = *(labelData + i * 6 + 3);
    bbox.yMax = *(labelData + i * 6 + 4);
    real isDifficult = *(labelData + i * 6 + 5);
    if (std::abs(isDifficult - 0.0) < 1e-6)
      bbox.isDifficult = false;
    else
      bbox.isDifficult = true;
    bboxVec[outOffset + i] = bbox;
  }
}

void getBBoxFromDetectData(const real* detectData,
                           const size_t numBBoxes,
                           vector<real>& labelVec,
                           vector<real>& scoreVec,
                           vector<NormalizedBBox>& bboxVec) {
  size_t outOffset = bboxVec.size();
  labelVec.resize(outOffset + numBBoxes);
  scoreVec.resize(outOffset + numBBoxes);
  bboxVec.resize(outOffset + numBBoxes);
  for (size_t i = 0; i < numBBoxes; ++i) {
    labelVec[outOffset + i] = *(detectData + i * 7 + 1);
    scoreVec[outOffset + i] = *(detectData + i * 7 + 2);
    NormalizedBBox bbox;
    bbox.xMin = *(detectData + i * 7 + 3);
    bbox.yMin = *(detectData + i * 7 + 4);
    bbox.xMax = *(detectData + i * 7 + 5);
    bbox.yMax = *(detectData + i * 7 + 6);
    bboxVec[outOffset + i] = bbox;
  }
}

void matchBBox(const vector<NormalizedBBox>& priorBBoxes,
               const vector<NormalizedBBox>& gtBBoxes,
               real overlapThreshold,
               vector<int>* matchIndices,
               vector<real>* matchOverlaps) {
  map<size_t, map<size_t, real>> overlaps;
  size_t numPriors = priorBBoxes.size();
  size_t numGTs = gtBBoxes.size();

  matchIndices->clear();
  matchIndices->resize(numPriors, -1);
  matchOverlaps->clear();
  matchOverlaps->resize(numPriors, 0.0);

  // Store the positive overlap between predictions and ground truth
  for (size_t i = 0; i < numPriors; ++i) {
    for (size_t j = 0; j < numGTs; ++j) {
      real overlap = jaccardOverlap(priorBBoxes[i], gtBBoxes[j]);
      if (overlap > 1e-6) {
        (*matchOverlaps)[i] = std::max((*matchOverlaps)[i], overlap);
        overlaps[i][j] = overlap;
      }
    }
  }
  // Bipartite matching
  vector<int> gtPool;
  for (size_t i = 0; i < numGTs; ++i) {
    gtPool.push_back(i);
  }
  while (gtPool.size() > 0) {
    // Find the most overlapped gt and corresponding predictions
    int maxPriorIdx = -1;
    int maxGTIdx = -1;
    real maxOverlap = -1.0;
    for (map<size_t, map<size_t, real>>::iterator it = overlaps.begin();
         it != overlaps.end();
         ++it) {
      size_t i = it->first;
      if ((*matchIndices)[i] != -1) {
        // The prediction already has matched ground truth or is ignored
        continue;
      }
      for (size_t p = 0; p < gtPool.size(); ++p) {
        int j = gtPool[p];
        if (it->second.find(j) == it->second.end()) {
          // No overlap between the i-th prediction and j-th ground truth
          continue;
        }
        // Find the maximum overlapped pair
        if (it->second[j] > maxOverlap) {
          maxPriorIdx = (int)i;
          maxGTIdx = (int)j;
          maxOverlap = it->second[j];
        }
      }
    }
    if (maxPriorIdx == -1) {
      break;
    } else {
      (*matchIndices)[maxPriorIdx] = maxGTIdx;
      (*matchOverlaps)[maxPriorIdx] = maxOverlap;
      gtPool.erase(std::find(gtPool.begin(), gtPool.end(), maxGTIdx));
    }
  }

  // Get most overlaped for the rest prediction bboxes
  for (map<size_t, map<size_t, real>>::iterator it = overlaps.begin();
       it != overlaps.end();
       ++it) {
    size_t i = it->first;
    if ((*matchIndices)[i] != -1) {
      // The prediction already has matched ground truth or is ignored
      continue;
    }
    int maxGTIdx = -1;
    real maxOverlap = -1;
    for (size_t j = 0; j < numGTs; ++j) {
      if (it->second.find(j) == it->second.end()) {
        // No overlap between the i-th prediction and j-th ground truth
        continue;
      }
      // Find the maximum overlapped pair
      real overlap = it->second[j];
      if (overlap > maxOverlap && overlap >= overlapThreshold) {
        maxGTIdx = j;
        maxOverlap = overlap;
      }
    }
    if (maxGTIdx != -1) {
      (*matchIndices)[i] = maxGTIdx;
      (*matchOverlaps)[i] = maxOverlap;
    }
  }
}

pair<size_t, size_t> generateMatchIndices(
    const MatrixPtr priorValue,
    const size_t numPriorBBoxes,
    const MatrixPtr gtValue,
    const int* gtStartPosPtr,
    const size_t seqNum,
    const vector<vector<real>>& maxConfScore,
    const size_t batchSize,
    const real overlapThreshold,
    const real negOverlapThreshold,
    const size_t negPosRatio,
    vector<vector<int>>* matchIndicesVecPtr,
    vector<vector<int>>* negIndicesVecPtr) {
  vector<NormalizedBBox> priorBBoxes;  // share same prior bboxes
  getBBoxFromPriorData(priorValue->getData(), numPriorBBoxes, priorBBoxes);
  size_t totalPos = 0;
  size_t totalNeg = 0;
  for (size_t n = 0; n < batchSize; ++n) {
    vector<int> matchIndices;
    vector<int> negIndices;
    vector<real> matchOverlaps;
    matchIndices.resize(numPriorBBoxes, -1);
    matchOverlaps.resize(numPriorBBoxes, 0.0);
    size_t numGTBBoxes = 0;
    if (n < seqNum) numGTBBoxes = gtStartPosPtr[n + 1] - gtStartPosPtr[n];
    if (!numGTBBoxes) {
      matchIndicesVecPtr->push_back(matchIndices);
      negIndicesVecPtr->push_back(negIndices);
      continue;
    }
    vector<NormalizedBBox> gtBBoxes;
    getBBoxFromLabelData(
        gtValue->getData() + gtStartPosPtr[n] * 6, numGTBBoxes, gtBBoxes);

    matchBBox(
        priorBBoxes, gtBBoxes, overlapThreshold, &matchIndices, &matchOverlaps);

    size_t numPos = 0;
    size_t numNeg = 0;
    for (size_t i = 0; i < matchIndices.size(); ++i)
      if (matchIndices[i] != -1) ++numPos;
    totalPos += numPos;
    vector<pair<real, size_t>> scoresIndices;
    for (size_t i = 0; i < matchIndices.size(); ++i)
      if (matchIndices[i] == -1 && matchOverlaps[i] < negOverlapThreshold) {
        scoresIndices.push_back(std::make_pair(maxConfScore[n][i], i));
        ++numNeg;
      }
    numNeg = std::min(static_cast<size_t>(numPos * negPosRatio), numNeg);
    std::sort(scoresIndices.begin(),
              scoresIndices.end(),
              sortScorePairDescend<size_t>);
    for (size_t i = 0; i < numNeg; ++i)
      negIndices.push_back(scoresIndices[i].second);
    totalNeg += numNeg;
    matchIndicesVecPtr->push_back(matchIndices);
    negIndicesVecPtr->push_back(negIndices);
  }
  return std::make_pair(totalPos, totalNeg);
}

void getMaxConfidenceScores(const real* confData,
                            const size_t batchSize,
                            const size_t numPriorBBoxes,
                            const size_t numClasses,
                            const size_t backgroundId,
                            vector<vector<real>>* maxConfScoreVecPtr) {
  maxConfScoreVecPtr->clear();
  for (size_t i = 0; i < batchSize; ++i) {
    vector<real> maxConfScore;
    for (size_t j = 0; j < numPriorBBoxes; ++j) {
      int offset = j * numClasses;
      real maxVal = -FLT_MAX;
      real maxPosVal = -FLT_MAX;
      real maxScore = 0.0;
      for (size_t c = 0; c < numClasses; ++c) {
        maxVal = std::max<real>(confData[offset + c], maxVal);
        if (c != backgroundId)
          maxPosVal = std::max<real>(confData[offset + c], maxPosVal);
      }
      real sum = 0.0;
      for (size_t c = 0; c < numClasses; ++c)
        sum += std::exp(confData[offset + c] - maxVal);
      maxScore = std::exp(maxPosVal - maxVal) / sum;
      maxConfScore.push_back(maxScore);
    }
    confData += numPriorBBoxes * numClasses;
    maxConfScoreVecPtr->push_back(maxConfScore);
  }
}

template <typename T>
bool sortScorePairDescend(const pair<real, T>& pair1,
                          const pair<real, T>& pair2) {
  return pair1.first > pair2.first;
}

template <>
bool sortScorePairDescend(const pair<real, NormalizedBBox>& pair1,
                          const pair<real, NormalizedBBox>& pair2) {
  return pair1.first > pair2.first;
}

void applyNMSFast(const vector<NormalizedBBox>& bboxes,
                  const real* confScoreData,
                  size_t classIdx,
                  size_t topK,
                  real confThreshold,
                  real nmsThreshold,
                  size_t numPriorBBoxes,
                  size_t numClasses,
                  vector<size_t>* indices) {
  vector<pair<real, size_t>> scores;
  for (size_t i = 0; i < numPriorBBoxes; ++i) {
    size_t confOffset = i * numClasses + classIdx;
    if (confScoreData[confOffset] > confThreshold)
      scores.push_back(std::make_pair(confScoreData[confOffset], i));
  }
  std::stable_sort(scores.begin(), scores.end(), sortScorePairDescend<size_t>);
  if (topK > 0 && topK < scores.size()) scores.resize(topK);
  while (scores.size() > 0) {
    const size_t idx = scores.front().second;
    bool keep = true;
    for (size_t i = 0; i < indices->size(); ++i) {
      if (keep) {
        const size_t savedIdx = (*indices)[i];
        real overlap = jaccardOverlap(bboxes[idx], bboxes[savedIdx]);
        keep = overlap <= nmsThreshold;
      } else {
        break;
      }
    }
    if (keep) indices->push_back(idx);
    scores.erase(scores.begin());
  }
}

size_t getDetectionIndices(
    const real* confData,
    const size_t numPriorBBoxes,
    const size_t numClasses,
    const size_t backgroundId,
    const size_t batchSize,
    const size_t confThreshold,
    const size_t nmsTopK,
    const real nmsThreshold,
    const size_t keepTopK,
    const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
    vector<map<size_t, vector<size_t>>>* allDetectionIndices) {
  size_t totalKeepNum = 0;
  for (size_t n = 0; n < batchSize; ++n) {
    const vector<NormalizedBBox>& decodedBBoxes = allDecodedBBoxes[n];
    size_t numDetected = 0;
    map<size_t, vector<size_t>> indices;
    size_t confOffset = n * numPriorBBoxes * numClasses;
    for (size_t c = 0; c < numClasses; ++c) {
      if (c == backgroundId) continue;
      applyNMSFast(decodedBBoxes,
                   confData + confOffset,
                   c,
                   nmsTopK,
                   confThreshold,
                   nmsThreshold,
                   numPriorBBoxes,
                   numClasses,
                   &(indices[c]));
      numDetected += indices[c].size();
    }
    if (keepTopK > 0 && numDetected > keepTopK) {
      vector<pair<real, pair<size_t, size_t>>> scoreIndexPairs;
      for (size_t c = 0; c < numClasses; ++c) {
        const vector<size_t>& labelIndices = indices[c];
        for (size_t i = 0; i < labelIndices.size(); ++i) {
          size_t idx = labelIndices[i];
          scoreIndexPairs.push_back(
              std::make_pair((confData + confOffset)[idx * numClasses + c],
                             std::make_pair(c, idx)));
        }
      }
      std::sort(scoreIndexPairs.begin(),
                scoreIndexPairs.end(),
                sortScorePairDescend<pair<size_t, size_t>>);
      scoreIndexPairs.resize(keepTopK);
      map<size_t, vector<size_t>> newIndices;
      for (size_t i = 0; i < scoreIndexPairs.size(); ++i) {
        size_t label = scoreIndexPairs[i].second.first;
        size_t idx = scoreIndexPairs[i].second.second;
        newIndices[label].push_back(idx);
      }
      allDetectionIndices->push_back(newIndices);
      totalKeepNum += keepTopK;
    } else {
      allDetectionIndices->push_back(indices);
      totalKeepNum += numDetected;
    }
  }
  return totalKeepNum;
}

void getDetectionOutput(const real* confData,
                        const size_t numKept,
                        const size_t numPriorBBoxes,
                        const size_t numClasses,
                        const size_t batchSize,
                        const vector<map<size_t, vector<size_t>>>& allIndices,
                        const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
                        MatrixPtr out) {
  MatrixPtr outBuffer;
  Matrix::resizeOrCreate(outBuffer, numKept, 7, false, false);
  real* bufferData = outBuffer->getData();
  size_t count = 0;
  for (size_t n = 0; n < batchSize; ++n) {
    for (map<size_t, vector<size_t>>::const_iterator it = allIndices[n].begin();
         it != allIndices[n].end();
         ++it) {
      size_t label = it->first;
      const vector<size_t>& indices = it->second;
      const vector<NormalizedBBox>& decodedBBoxes = allDecodedBBoxes[n];
      for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
        size_t confOffset = n * numPriorBBoxes * numClasses + idx * numClasses;
        bufferData[count * 7] = n;
        bufferData[count * 7 + 1] = label;
        bufferData[count * 7 + 2] = (confData + confOffset)[label];
        NormalizedBBox clippedBBox = clipBBox(decodedBBoxes[idx]);
        bufferData[count * 7 + 3] = clippedBBox.xMin;
        bufferData[count * 7 + 4] = clippedBBox.yMin;
        bufferData[count * 7 + 5] = clippedBBox.xMax;
        bufferData[count * 7 + 6] = clippedBBox.yMax;
        ++count;
      }
    }
  }
  out->copyFrom(bufferData, numKept * 7);
}

NormalizedBBox clipBBox(const NormalizedBBox& bbox) {
  real realOne = static_cast<real>(1.0);
  real realZero = static_cast<real>(0.0);
  NormalizedBBox clippedBBox;
  clippedBBox.xMin = std::max(std::min(bbox.xMin, realOne), realZero);
  clippedBBox.yMin = std::max(std::min(bbox.yMin, realOne), realZero);
  clippedBBox.xMax = std::max(std::min(bbox.xMax, realOne), realZero);
  clippedBBox.yMax = std::max(std::min(bbox.yMax, realOne), realZero);
  return clippedBBox;
}

}  // namespace paddle