fusion_seqexpand_concat_fc_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/fusion_seqexpand_concat_fc_op.h"
16 17 18 19 20 21 22 23 24
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32 33 34 35 36 37 38
void FusionSeqExpandConcatFCOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_GT(
      ctx->Inputs("X").size(), 1UL,
      "Inputs(X) of FusionSeqExpandConcatFCOp should larger than 1.");
  PADDLE_ENFORCE(
      ctx->HasInput("FCWeight"),
      "Input(FCWeight) of FusionSeqExpandConcatFCOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("Out"),
      "Output(Out) of FusionSeqExpandConcatFCOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("FCOut"),
      "Output(FCOut) of FusionSeqExpandConcatFCOp should not be null.");
T
tensor-tang 已提交
39

T
tensor-tang 已提交
40 41 42 43 44 45 46
  auto ins_dims = ctx->GetInputsDim("X");
  auto w_dims = ctx->GetInputDim("FCWeight");  // (M0+M1+M2+..) x D
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL, "Input(FCWeight)'s rank must be 2.");
  const int D = w_dims[1];
  int sum = ins_dims[0][1];
  for (size_t i = 1; i < ins_dims.size(); ++i) {
    sum += ins_dims[i][1];
47
  }
T
tensor-tang 已提交
48 49 50 51
  PADDLE_ENFORCE_EQ(sum, w_dims[0],
                    "FC height should be sum of all inputs width.");
  if (ctx->HasInput("FCBias")) {
    auto b_dims = ctx->GetInputDim("FCBias");
52 53 54 55 56 57 58 59
    PADDLE_ENFORCE(b_dims.size() == 1 || b_dims.size() == 2,
                   "b_dims should be 1 or 2, get %d", b_dims.size());
    if (b_dims.size() == 1) {
      PADDLE_ENFORCE_EQ(b_dims[0], D, "FCBias shapes must be %d.", D);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[0], 1, "FCBias shapes must be 1x%d.", D);
      PADDLE_ENFORCE_EQ(b_dims[1], D, "FCBias shapes must be 1x%d.", D);
    }
60 61
  }

T
tensor-tang 已提交
62 63 64 65
  ctx->SetOutputDim("Out", {ins_dims[0][0], D});
  // fcout should be reshape when run since can not get lod in infershape
  // explicit share the ref lod
  ctx->ShareLoD("X", "Out", 0);
66 67
}

68
framework::OpKernelType FusionSeqExpandConcatFCOp::GetExpectedKernelType(
69 70
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
71
      framework::ToDataType(ctx.MultiInput<LoDTensor>("X")[0]->type()),
72 73 74
      ctx.device_context());
}

75
void FusionSeqExpandConcatFCOpMaker::Make() {
76
  AddInput("X",
T
tensor-tang 已提交
77 78 79 80 81 82
           "(LoDTensor) input LodDTensors, the first one must be have ref lod "
           "for sequence expand, and the rest input should have same lod.")
      .AsDuplicable();
  AddInput("FCWeight", "(Tensor) the weights of fc.");
  AddInput("FCBias", "(Tensor, optional) the bias of fc.").AsDispensable();
  AddOutput("Out", "(LoDTensor) Output LodTensor.");
83
  AddOutput(
T
tensor-tang 已提交
84 85 86
      "FCOut",
      "(Tensor) the intermediate tensor to keep the result of fc."
      "Shape is (N x D), where N is the batch size, D is the output dim of fc")
87
      .AsIntermediate();
T
tensor-tang 已提交
88 89 90 91 92
  AddAttr<std::string>("fc_activation",
                       "(string, default: identity)"
                       "The activation for the result of fc."
                       "`identity` by default.")
      .SetDefault("identity")
93 94 95 96
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
Fusion Sequence expand + concat + fc Operator.

T
tensor-tang 已提交
97
All below conditions should be meet:
98

T
tensor-tang 已提交
99
The ref_level of seq_expand should be 0.
100

T
tensor-tang 已提交
101 102 103 104 105 106 107
The ref lod of seq_expand level is the first input of concat.

The other inputs should have same lod and same batch size of ref lod.

The seq len of other inputs should be 1.

The concat axis should be 1.
108 109 110 111 112

)DOC");
}

template <typename T>
113
class FusionSeqExpandConcatFCOpKernel : public framework::OpKernel<T> {
114 115 116
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
117
    auto ins = ctx.MultiInput<LoDTensor>("X");
T
tensor-tang 已提交
118 119 120
    auto* w = ctx.Input<Tensor>("FCWeight");
    auto* b = ctx.Input<Tensor>("FCBias");
    auto* out = ctx.Output<LoDTensor>("Out");
T
tensor-tang 已提交
121
    auto* fc_out = ctx.Output<Tensor>("FCOut");
T
tensor-tang 已提交
122

T
tensor-tang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    auto* ref_in = ins[0];
    auto ref_lod = ref_in->lod();
    auto in1_lod = ins[1]->lod();
    auto ref_dims = ref_in->dims();  // T x M0
    auto in1_dims = ins[1]->dims();  // N x M1
    auto w_dims = w->dims();
    const int N = ref_lod[0].size() - 1;
    const int total_T = ref_dims[0];
    const int M0 = ref_dims[1];
    const int M1 = in1_dims[1];
    const int D = w_dims[1];

    // some check and fcout should be reshape here
    // since infershape can not get lod info
    PADDLE_ENFORCE_EQ(ref_lod.size(), 1UL, "Only support input lod size is 1.");
    PADDLE_ENFORCE_EQ(in1_lod.size(), 1UL, "Only support input lod size is 1.");
T
tensor-tang 已提交
139
    PADDLE_ENFORCE_EQ(static_cast<int>(in1_lod[0].size() - 1), N,
T
tensor-tang 已提交
140
                      "Batch size of all inputs should be equal.");
T
tensor-tang 已提交
141
    PADDLE_ENFORCE_EQ(static_cast<int>(in1_lod[0][N]), N,
T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151
                      "Seq_length of other inputs should be 1.");
    PADDLE_ENFORCE_EQ(in1_dims[0], N, "input height should be batch size.");
    for (size_t i = 2; i < ins.size(); ++i) {
      PADDLE_ENFORCE_EQ(ins[i]->dims()[0], N,
                        "All other inputs height should be equal");
      PADDLE_ENFORCE_EQ(ins[i]->lod(), in1_lod,
                        "All other inputs should have same lod");
    }
    fc_out->Resize({N, D});

T
tensor-tang 已提交
152 153
    std::function<void(const int, const T*, T*)> fc_act;
    auto& fc_act_str = ctx.Attr<std::string>("fc_activation");
154 155
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
T
tensor-tang 已提交
156
      fc_act = act_functor(fc_act_str);
157 158
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
T
tensor-tang 已提交
159
      fc_act = act_functor(fc_act_str);
160 161
    }

T
tensor-tang 已提交
162
    const T* ref_in_data = ref_in->data<T>();
T
tensor-tang 已提交
163 164 165
    const T* in1_data = ins[1]->data<T>();
    const T* w_data = w->data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());
166 167 168
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
169 170 171
    math::FCCompute<DeviceContext, T>(blas, total_T, D, M0, ref_in_data, w_data,
                                      out_data, b ? b->data<T>() : NULL);
    w_data = w_data + M0 * D;
T
tensor-tang 已提交
172
    // first write on
T
tensor-tang 已提交
173 174
    blas.MatMul(N, D, M1, in1_data, w_data, fc_out_data);
    w_data = w_data + M1 * D;
T
tensor-tang 已提交
175
    for (size_t i = 2; i < ins.size(); ++i) {
T
tensor-tang 已提交
176 177 178 179 180 181 182
      // add on
      const T* in_data = ins[i]->data<T>();
      const int K = ins[i]->dims()[1];
      blas.GEMM(CblasNoTrans, CblasNoTrans, N, D, K, static_cast<T>(1), in_data,
                K, w_data, D, static_cast<T>(1), fc_out_data, D);
      w_data = w_data + K * D;
    }
T
tensor-tang 已提交
183
    T* cur_out_data = out_data;
184
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
185
      int seq_len = ref_lod[0][i + 1] - ref_lod[0][i];
T
tensor-tang 已提交
186
      T* src = fc_out_data + i * D;
187
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
188 189
        blas.VADD(D, cur_out_data, src, cur_out_data);
        cur_out_data = cur_out_data + D;
190 191
      }
    }
T
tensor-tang 已提交
192
    fc_act(total_T * D, out_data, out_data);
193 194 195 196 197 198 199
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
200 201
REGISTER_OPERATOR(fusion_seqexpand_concat_fc, ops::FusionSeqExpandConcatFCOp,
                  ops::FusionSeqExpandConcatFCOpMaker,
202 203
                  paddle::framework::DefaultGradOpDescMaker<true>);

204 205 206
REGISTER_OP_CPU_KERNEL(fusion_seqexpand_concat_fc,
                       ops::FusionSeqExpandConcatFCOpKernel<float>,
                       ops::FusionSeqExpandConcatFCOpKernel<double>);