operator.h 13.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56
// define some kernel priority
57
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
58 59
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

60 61 62 63
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
64 65
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
66
class OperatorBase;
67
class ExecutionContext;
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
77 78
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
79

Q
Qiao Longfei 已提交
80 81 82
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
83
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
84 85 86 87 88
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

89 90 91 92
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;

  std::string DebugString() const { return DebugStringEx(nullptr); }
Q
Qiao Longfei 已提交
93

94 95 96
  /// Net will call this interface function to Run an op.
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
97

T
typhoonzero 已提交
98 99 100
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

Y
Yu Yang 已提交
101 102
  virtual bool IsNetOp() const { return false; }

103 104
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
105 106 107
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
108 109
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
110

Y
Yu Yang 已提交
111
  //! Get a input with argument's name described in `op_proto`
112
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
113
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
114
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
115

Q
qijun 已提交
116 117
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
118
  //! Get a output with argument's name described in `op_proto`
119
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
120 121
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
122
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
123

Y
Yu Yang 已提交
124
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
125

Q
qiaolongfei 已提交
126
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
127
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
128 129
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
130
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
131 132
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
133

Q
qiaolongfei 已提交
134
 protected:
Q
Qiao Longfei 已提交
135
  std::string type_;
D
dongzhihong 已提交
136
  // NOTE: in case of OpGrad, inputs_ contains:
137
  // I (Inputs)
D
dongzhihong 已提交
138 139
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
140
  VariableNameMap inputs_;
Y
Yu Yang 已提交
141

D
dongzhihong 已提交
142 143
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
144
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
145
  AttributeMap attrs_;
146 147 148 149

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
150 151
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
152 153
};

Y
Yu Yang 已提交
154 155
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
156
// register it. i.e. `Clone` method is not needed to define by yourself.
157 158 159
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
160
  }
Y
Yu Yang 已提交
161

Y
Yu Yang 已提交
162 163 164 165
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
166 167
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
168 169 170
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
171
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
172

173 174
class NOP : public OperatorBase {
 public:
175
  using OperatorBase::OperatorBase;
176 177 178
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
179 180 181 182

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
183 184
};

185
class ExecutionContext {
Y
Yan Chunwei 已提交
186
 public:
187 188 189
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
190

Q
qiaolongfei 已提交
191 192 193 194
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
195
  template <typename T>
Y
Yu Yang 已提交
196 197
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
198 199
  }

Y
Yu Yang 已提交
200
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
201
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
202 203
  }

Y
Yu Yang 已提交
204
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
205
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
206 207
  }

208
  const Variable* InputVar(const std::string& name) const {
209
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
210
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
211 212
  }

213
  Variable* OutputVar(const std::string& name) const {
214
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
215
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
216 217
  }

218 219
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
220 221
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
222
    res.reserve(names.size());
223 224
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
225 226
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
227
                   });
Y
Yan Chunwei 已提交
228 229 230
    return res;
  }

231
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
232
    auto names = op_.Outputs(name);
233
    std::vector<Variable*> res;
234
    res.reserve(names.size());
235 236
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
237 238
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
239
                   });
Y
Yan Chunwei 已提交
240 241 242
    return res;
  }

243 244
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
245
    auto* var = InputVar(name);
246
    return var == nullptr ? nullptr : &var->Get<T>();
247 248 249 250
  }

  template <typename T>
  T* Output(const std::string& name) const {
251
    auto var = OutputVar(name);
252
    return var == nullptr ? nullptr : var->GetMutable<T>();
253 254 255 256 257 258 259 260
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
261
                   [&](const std::string& sub_name) {
262
                     auto var = scope_.FindVar(sub_name);
263
                     return var == nullptr ? nullptr : &var->Get<T>();
264 265 266 267 268
                   });
    return res;
  }

  template <typename T>
269
  std::vector<T*> MultiOutput(const std::string& name) const {
270
    auto names = op_.Outputs(name);
271
    std::vector<T*> res;
272 273
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
274
                   [&](const std::string& sub_name) {
275
                     auto var = scope_.FindVar(sub_name);
276
                     return var == nullptr ? nullptr : var->GetMutable<T>();
277 278 279 280
                   });
    return res;
  }

281 282 283 284 285 286
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
287
    if (!in_var->IsType<LoDTensor>()) return;
288
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
289
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
290 291 292
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
293 294
  }

295
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
296

Q
QI JUN 已提交
297 298 299 300 301
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

302
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
303
    return device_context_;
Q
qijun 已提交
304
  }
Q
qijun 已提交
305

Q
QI JUN 已提交
306 307 308 309 310 311 312 313
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
314
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
315 316 317
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
318

D
dzhwinter 已提交
319
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
320 321 322 323
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

324
 private:
325 326
  const OperatorBase& op_;
  const Scope& scope_;
327
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
328 329
};

330 331 332 333 334 335 336 337 338 339 340 341 342 343
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
344
class OpKernelBase {
Q
qijun 已提交
345
 public:
Q
qijun 已提交
346
  /**
347
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
348 349
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
350
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
351 352
   */

353
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
354

Y
Yu Yang 已提交
355 356 357 358 359 360 361
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
362 363
};

Y
Yu Yang 已提交
364 365
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
366
  using OpKernelMap =
Y
Yu Yang 已提交
367 368
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
369

Y
Yu Yang 已提交
370 371
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
372 373
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
374 375 376 377
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
378
  }
Y
Yan Chunwei 已提交
379

380
  bool SupportGPU() const override {
Y
Yu Yang 已提交
381 382 383 384 385
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
386 387
  }

388 389 390
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
391

Q
qiaolongfei 已提交
392
 protected:
393 394 395 396
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
397 398

 private:
399
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
400
  // same.
401
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
402
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
403 404
};

Y
Yu Yang 已提交
405 406
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
407 408
}  // namespace framework
}  // namespace paddle