convolution.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace funcs {
namespace sparse {

struct Dims4D {
  int dims[4];
  Dims4D(const int batch, const int x, const int y, const int z) {
    dims[0] = batch;
    dims[1] = z;
    dims[2] = y;
    dims[3] = x;
  }
  HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
inline HOSTDEVICE bool Check(const int& x,
                             const int& kx,
                             const int& pad,
                             const int& stride,
                             const int dilation,
                             const int kdim,
                             const int xdim) {
  const int lower = x - dilation * kx + pad;
  const int uper = x + (kdim - kx - 1) * dilation - pad;
  return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
inline HOSTDEVICE bool Check(const Dims4D& dims,
                             const Dims4D& kernel_dims,
                             const Dims4D& paddings,
                             const Dims4D& dilations,
                             const Dims4D& strides,
                             const int x,
                             const int y,
                             const int z,
                             const int kx,
                             const int ky,
                             const int kz) {
  bool x_valid = Check(
      x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
  bool y_valid = Check(
      y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
  bool z_valid = Check(
      z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
  return (x_valid && y_valid && z_valid);
}

template <typename Dim>
inline HOSTDEVICE int PointToIndex(const int& batch,
                                   const int& x,
                                   const int& y,
                                   const int& z,
                                   const Dim& dims) {
  return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
         y * dims[3] + x;
}

// TODO(zhangkaihuo): use division and multiply to optimize
// modulo operation
template <typename Dim>
inline HOSTDEVICE void IndexToPoint(
    const int index, const Dim& dims, int* batch, int* x, int* y, int* z) {
  int n = index;
  *x = n % dims[3];
  n /= dims[3];
  *y = n % dims[2];
  n /= dims[2];
  *z = n % dims[1];
  n /= dims[1];
  *batch = n;
}

inline void GetOutShape(const DDim& x_dims,
Z
zhangkaihuo 已提交
96
                        const std::vector<int>& kernel_sizes,
97 98 99 100 101 102 103 104
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        DDim* out_dims) {
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
Z
zhangkaihuo 已提交
105
  PADDLE_ENFORCE_EQ(kernel_sizes.size(),
106 107 108 109 110 111
                    5,
                    phi::errors::InvalidArgument(
                        "the shape of kernel should be (D, H, W, C, OC)"));

  // infer out shape
  (*out_dims)[0] = x_dims[0];
Z
zhangkaihuo 已提交
112
  (*out_dims)[4] = kernel_sizes[4];
113 114
  for (int i = 1; i < 4; i++) {
    (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
Z
zhangkaihuo 已提交
115
                      dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                         strides[i - 1] +
                     1;
  }
}

inline void ResetSubmKernelSizeAndStrides(const DDim& kernel_dims,
                                          std::vector<int>* paddings,
                                          std::vector<int>* strides) {
  for (uint64_t i = 0; i < paddings->size(); i++) {
    (*paddings)[i] = kernel_dims[i] / 2;
    (*strides)[i] = 1;
  }
}

template <typename T, typename Context>
inline void SubmPreProcess(const Context& dev_ctx,
                           const SparseCooTensor& x,
                           const DenseTensor& kernel,
Z
zhangkaihuo 已提交
134
                           const DenseTensor& out_grad,
135 136 137 138 139 140 141 142 143 144
                           const int in_channels,
                           const int out_channels,
                           const int half_kernel_size,
                           DenseTensor* kernel_grad,
                           DenseTensor* x_grad) {
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  T* d_kernel_ptr = kernel_grad->data<T>();
  blas.GEMM(CblasTrans,
            CblasNoTrans,
            x.non_zero_elements().dims()[1],
Z
zhangkaihuo 已提交
145
            out_grad.dims()[1],
146 147 148
            x.non_zero_elements().dims()[0],
            static_cast<T>(1),
            x.non_zero_elements().data<T>(),
Z
zhangkaihuo 已提交
149
            out_grad.data<T>(),
150 151 152 153 154 155 156 157
            static_cast<T>(0),
            d_kernel_ptr + half_kernel_size * in_channels * out_channels);

  // call gemm: d_x = out_grad * transpose(kernel)
  // (n, out_channels) * (out_channels, in_channels)
  T* x_grad_ptr = x_grad->data<T>();
  blas.GEMM(CblasNoTrans,
            CblasTrans,
Z
zhangkaihuo 已提交
158
            out_grad.dims()[0],
159
            in_channels,
Z
zhangkaihuo 已提交
160
            out_grad.dims()[1],
161
            static_cast<T>(1),
Z
zhangkaihuo 已提交
162
            out_grad.data<T>(),
163 164 165 166 167
            kernel.data<T>() + half_kernel_size * in_channels * out_channels,
            static_cast<T>(0),
            x_grad_ptr);
}

Z
zhangkaihuo 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
inline const std::vector<int> PoolResetKernel(
    const std::vector<int>& kernel_sizes,
    const int in_channels,
    const int out_channels) {
  std::vector<int> res(kernel_sizes);
  res.resize(5);
  res[3] = in_channels;
  res[4] = out_channels;
  return res;
}

inline void PrefixSum(const int* counter, int* offsets, const int n) {
  int offset = 0;
  for (int i = 0; i < n; i++) {
    offsets[i] = offset;
    offset += counter[i];
  }
  offsets[n] = offset;
}

188 189 190
}  // namespace sparse
}  // namespace funcs
}  // namespace phi