test_norm_all.py 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def p_norm(x, axis, porder, keepdims=False):
myq406450149's avatar
myq406450149 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    r = []
    if axis is None:
        x = x.flatten()
        if porder == np.inf:
            r = np.amax(np.abs(x))
        elif porder == -np.inf:
            r = np.amin(np.abs(x))
        else:
            r = np.linalg.norm(x, ord=porder)
    elif isinstance(axis, list or tuple) and len(axis) == 2:
        if porder == np.inf:
            axis = tuple(axis)
            r = np.amax(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == -np.inf:
            axis = tuple(axis)
            r = np.amin(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == 0:
            axis = tuple(axis)
            r = x.astype(bool)
            r = np.sum(r, axis)
        elif porder == 1:
            axis = tuple(axis)
            r = np.sum(np.abs(x), axis)
        else:
            axis = tuple(axis)
            xp = np.power(np.abs(x), porder)
            s = np.sum(xp, axis=axis, keepdims=keepdims)
            r = np.power(s, 1.0 / porder)
    else:
        if isinstance(axis, list):
            axis = tuple(axis)
        r = np.linalg.norm(
            x, ord=porder, axis=axis, keepdims=keepdims).astype(x.dtype)

59 60 61 62 63 64
    return r


def frobenius_norm(x, axis=None, keepdims=False):
    if isinstance(axis, list): axis = tuple(axis)
    if axis is None: axis = (-2, -1)
65 66
    r = np.linalg.norm(
        x, ord='fro', axis=axis, keepdims=keepdims).astype(x.dtype)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    return r


class TestFrobeniusNormOp(OpTest):
    def setUp(self):
        self.op_type = "frobenius_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 1.0).astype(self.dtype)
        norm = frobenius_norm(x, self.axis, self.keepdim)
        self.reduce_all = (len(self.axis) == len(self.shape))
        self.inputs = {'X': x}
        self.attrs = {
            'dim': list(self.axis),
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }
        self.outputs = {'Out': norm}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = (1, 2)
        self.keepdim = False
        self.dtype = "float64"


class TestFrobeniusNormOp2(TestFrobeniusNormOp):
    def init_test_case(self):
        self.shape = [5, 5, 5]
        self.axis = (0, 1)
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestPnormOp(OpTest):
    def setUp(self):
        self.op_type = "p_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 0.5).astype(self.dtype)
        norm = p_norm(x, self.axis, self.porder, self.keepdim)
        self.inputs = {'X': x}
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder)
        }
        self.outputs = {'Out': norm}
123
        self.gradient = self.calc_gradient()
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = 1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = "float64"

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def calc_gradient(self):
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder)
        }
        x = self.inputs["X"]
        porder = self.attrs["porder"]
        axis = self.attrs["axis"]
        if porder == 0:
            grad = np.zeros(x.shape).astype(x.dtype)
        elif porder in [float("inf"), float("-inf")]:
            norm = p_norm(x, axis=axis, porder=porder, keepdims=True)
            x_abs = np.abs(x)
            grad = np.sign(x)
            grad[x_abs != norm] = 0.0
        else:
            norm = p_norm(x, axis=axis, porder=porder, keepdims=True)
            grad = np.power(norm, 1 - porder) * np.power(
                np.abs(x), porder - 1) * np.sign(x)

        numel = 1
        for s in x.shape:
            numel *= s
        numel /= x.shape[axis]
        return [grad.astype(x.dtype) * 1 / numel]

167 168 169 170 171 172 173 174 175 176 177 178 179 180

class TestPnormOp2(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
class TestPnormOp3(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = np.inf
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp4(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = -np.inf
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp5(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 0
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


220 221 222
def run_fro(self, p, axis, shape_x, dtype):
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
223
        out = paddle.norm(x=data, p=p, axis=axis)
224 225 226 227 228 229 230 231 232 233 234
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
        expected_result = frobenius_norm(np_input, axis=axis)
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
    self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)


def run_pnorm(self, p, axis, shape_x, dtype):
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
235
        out = paddle.norm(x=data, p=p, axis=axis)
236 237 238 239 240
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
        expected_result = p_norm(np_input, porder=p, axis=axis).astype(dtype)
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
myq406450149's avatar
myq406450149 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)


def run_graph(self, p, axis, shape_x, dtype):
    paddle.disable_static()
    shape = [2, 3, 4]
    np_input = np.arange(24).astype('float32') - 12
    np_input = np_input.reshape(shape)
    x = paddle.to_tensor(np_input)
    #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
    # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]
    out_pnorm = paddle.norm(x, p=2, axis=-1)

    # compute frobenius norm along last two dimensions.
    out_fro = paddle.norm(x, p='fro')
    out_fro = paddle.norm(x, p='fro', axis=[0, 1])
    # compute 2-order  norm along [0,1] dimension.
    out_pnorm = paddle.norm(x, p=2, axis=[0, 1])
    out_pnorm = paddle.norm(x, p=2)
    #out_pnorm = [17.43559577 16.91153453 16.73320053 16.91153453]
    # compute inf-order  norm
    out_pnorm = paddle.norm(x, p=np.inf)
    #out_pnorm = [12.]
    out_pnorm = paddle.norm(x, p=np.inf, axis=0)
    #out_pnorm = [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]

    # compute -inf-order  norm
    out_pnorm = paddle.norm(x, p=-np.inf)
    #out_pnorm = [0.]
    out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
    # out_fro = [17.43559577 16.91153453 16.73320053 16.91153453]
    paddle.enable_static()
273 274 275 276


class API_NormTest(unittest.TestCase):
    def test_basic(self):
myq406450149's avatar
myq406450149 已提交
277 278
        run_fro(self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32")
        run_fro(self, p='fro', axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")
279 280
        run_pnorm(self, p=2, axis=None, shape_x=[3, 4], dtype="float32")
        run_pnorm(self, p=2, axis=1, shape_x=[3, 4], dtype="float64")
myq406450149's avatar
myq406450149 已提交
281 282 283 284 285
        run_pnorm(self, p=np.inf, axis=0, shape_x=[2, 3, 4], dtype="float32")
        run_pnorm(self, p=np.inf, axis=None, shape_x=[2, 3, 4], dtype="float32")
        run_pnorm(self, p=-np.inf, axis=0, shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(
            self, p=-np.inf, axis=None, shape_x=[2, 3, 4], dtype="float64")
286
        run_pnorm(self, p=0, axis=1, shape_x=[3, 4], dtype="float64")
287

myq406450149's avatar
myq406450149 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
        run_pnorm(self, p=1, axis=1, shape_x=[3, 4], dtype="float64")
        run_pnorm(self, p=0, axis=None, shape_x=[3, 4], dtype="float64")
        run_pnorm(self, p=2, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(self, p=2, axis=-1, shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(self, p=1, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(self, p=0, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(
            self, p=np.inf, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")
        run_pnorm(
            self, p=-np.inf, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64")

    def test_dygraph(self):
        run_graph(self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32")

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[10, 10], dtype="float32")
            y_1 = paddle.norm(x, p='fro', name='frobenius_name')
            y_2 = paddle.norm(x, p=2, name='pnorm_name')
            self.assertEqual(('frobenius_name' in y_1.name), True)
            self.assertEqual(('pnorm_name' in y_2.name), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):

            def err_dtype(p, shape_x, xdtype, out=None):
                data = fluid.data(shape=shape_x, dtype=xdtype)
                paddle.norm(data, p=p, out=out)

            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64")
            out = fluid.data(name="out", shape=[1], dtype="int64")
            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64",
                              out)
            self.assertRaises(TypeError, err_dtype, 2, [10], "int64")
            self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out)

            data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64")
            self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm")
            self.assertRaises(ValueError, paddle.norm, data, p=[1])
            self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1)
            data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64")
            self.assertRaises(
                ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1])


if __name__ == '__main__':
    unittest.main()