test_sparse_elementwise_op.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
from operator import __add__, __sub__, __mul__, __truediv__

import numpy as np
import paddle
from paddle.fluid.framework import _test_eager_guard

op_list = [__add__, __sub__, __mul__, __truediv__]


def get_actual_res(x, y, op):
    if op == __add__:
        res = paddle.incubate.sparse.add(x, y)
    elif op == __sub__:
        res = paddle.incubate.sparse.subtract(x, y)
    elif op == __mul__:
        res = paddle.incubate.sparse.multiply(x, y)
    elif op == __truediv__:
        res = paddle.incubate.sparse.divide(x, y)
    else:
        raise ValueError("unsupported op")
    return res


class TestSparseElementWiseAPI(unittest.TestCase):
    """
    test paddle.sparse.add, subtract, multiply, divide
    """

    def setUp(self):
        paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        np.random.seed(2022)
        self.op_list = op_list
        self.csr_shape = [128, 256]
        self.coo_shape = [4, 8, 3, 5]
        self.support_dtypes = ['float32', 'float64', 'int32', 'int64']

    def func_test_csr(self, op):
        for dtype in self.support_dtypes:
            x = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)
            y = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)

            dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

            s_dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            s_dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)
            csr_x = s_dense_x.to_sparse_csr()
            csr_y = s_dense_y.to_sparse_csr()

            actual_res = get_actual_res(csr_x, csr_y, op)
            actual_res.backward(actual_res)

            expect_res = op(dense_x, dense_y)
            expect_res.backward(expect_res)

            self.assertTrue(
                np.allclose(expect_res.numpy(),
                            actual_res.to_dense().numpy(),
                            equal_nan=True))
            if not (op == __truediv__ and dtype in ['int32', 'int64']):
                self.assertTrue(
                    np.allclose(dense_x.grad.numpy(),
                                csr_x.grad.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_y.grad.numpy(),
                                csr_y.grad.to_dense().numpy(),
                                equal_nan=True))

    def func_test_coo(self, op):
        for sparse_dim in range(len(self.coo_shape) - 1, len(self.coo_shape)):
            for dtype in self.support_dtypes:
                x = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)
                y = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)

                dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
                dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

                s_dense_x = paddle.to_tensor(x,
                                             dtype=dtype,
                                             stop_gradient=False)
                s_dense_y = paddle.to_tensor(y,
                                             dtype=dtype,
                                             stop_gradient=False)
                coo_x = s_dense_x.to_sparse_coo(sparse_dim)
                coo_y = s_dense_y.to_sparse_coo(sparse_dim)

                actual_res = get_actual_res(coo_x, coo_y, op)
                actual_res.backward(actual_res)

                expect_res = op(dense_x, dense_y)
                expect_res.backward(expect_res)

                self.assertTrue(
                    np.allclose(expect_res.numpy(),
                                actual_res.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_x.grad.numpy(),
                                coo_x.grad.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_y.grad.numpy(),
                                coo_y.grad.to_dense().numpy(),
                                equal_nan=True))

    def test_support_dtypes_csr(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
            with _test_eager_guard():
                for op in op_list:
                    self.func_test_csr(op)

    def test_support_dtypes_coo(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
            with _test_eager_guard():
                for op in op_list:
                    self.func_test_coo(op)


if __name__ == "__main__":
    paddle.device.set_device('cpu')
    unittest.main()