test_quantize_transpiler.py 10.1 KB
Newer Older
D
Dang Qingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.transpiler.quantize_transpiler import _original_var_name


def linear_fc(num):
    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in xrange(num):
        hidden = fluid.layers.fc(hidden, size=128, act='relu')
    loss = fluid.layers.cross_entropy(input=hidden, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def residual_block(num):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in xrange(num):
        conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
        short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
        hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
    fc = fluid.layers.fc(input=hidden, size=10)
    loss = fluid.layers.cross_entropy(input=fc, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    return avg_loss


class TestQuantizeTranspiler(unittest.TestCase):
    def setUp(self):
        # since quant_op and dequant_op is not ready, use cos and sin for test
        self.weight_quant_op_type = 'fake_quantize_abs_max'
        self.dequant_op_type = 'fake_dequantize_max_abs'
        self.quantizable_op_and_inputs = {
            'conv2d': ['Input', 'Filter'],
            'depthwise_conv2d': ['Input', 'Filter'],
            'mul': ['X', 'Y']
        }
        self.quantizable_op_grad_and_inputs = {
            'conv2d_grad': ['Input', 'Filter'],
            'depthwise_conv2d_grad': ['Input', 'Filter'],
            'mul_grad': ['X', 'Y']
        }

    def check_program(self, program):
        quantized_ops = {}

        persistable_vars = [
            v.name
            for v in filter(lambda var: var.persistable, program.list_vars())
        ]

        for block in program.blocks:
            for idx, op in enumerate(block.ops):
                # check forward
                if op.type in self.quantizable_op_and_inputs:
                    for i, arg_name in enumerate(op.input_arg_names):
                        quant_op_type = self.weight_quant_op_type if \
                            _original_var_name(arg_name) \
                            in persistable_vars else self.act_quant_op_type
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        if arg_name not in quantized_ops:
                            self.assertEqual(block.ops[idx - 2 * i - 1].type,
                                             self.dequant_op_type)
                            self.assertEqual(block.ops[idx - 2 * i - 2].type,
                                             quant_op_type)
                            quantized_ops[arg_name] = block.ops[idx - 2 * i - 2]
                        else:
                            op_idx = block.ops.index(quantized_ops[arg_name])
                            self.assertLess(op_idx, idx)

                # check backward
                if op.type in self.quantizable_op_grad_and_inputs:
                    for pname in self.quantizable_op_grad_and_inputs[op.type]:
                        arg_name = op.input(pname)[0]
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        self.assertTrue(arg_name in quantized_ops)

    def linear_fc_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = linear_fc(3)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
            t = fluid.QuantizeTranspiler(activation_quantize_type=quant_type)
            t.training_transpile(main)
            self.check_program(main)

    def test_linear_fc_quant_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.linear_fc_quant('abs_max')

    def test_linear_fc_quant_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.linear_fc_quant('range_abs_max')

    def residual_block_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = residual_block(2)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
            t = fluid.QuantizeTranspiler(activation_quantize_type=quant_type)
            t.training_transpile(main)
            self.check_program(main)

    def test_residual_block_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.residual_block_quant('abs_max')

    def test_residual_block_range_abs_max(self):
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.residual_block_quant('range_abs_max')

    def freeze_program(self, use_cuda):
        main = fluid.Program()
        startup = fluid.Program()
        quant_transpiler = fluid.QuantizeTranspiler()
        with fluid.program_guard(main, startup):
            img = fluid.layers.data(
                name='image', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = conv_net(img, label)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
            quant_transpiler.training_transpile(main)

        test_program = main.clone()
        with fluid.program_guard(test_program):
            test_program = fluid.io.get_inference_program(loss)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        iter = 5
        batch_size = 8
        class_num = 10
        exe.run(startup)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

        for _ in range(iter):
            data = train_reader().next()
            loss_v = exe.run(program=main,
                             feed=feeder.feed(data),
                             fetch_list=[loss])
        test_data = test_reader().next()

        f_var = fluid.framework.get_var('conv2d_1.tmp_0', test_program)
        w_var = fluid.framework.get_var('conv2d_1.w_0.quantized', test_program)
        # Testing during training
        test_loss1, f_v1, w_quant = exe.run(program=test_program,
                                            feed=feeder.feed(test_data),
                                            fetch_list=[loss, f_var, w_var])

        # Freeze program for inference, but the weight of fc/conv is still float type.
        quant_transpiler.freeze_program(test_program, place)
        fv2 = fluid.framework.get_var('conv2d_1.tmp_0.dequantized',
                                      test_program)
        test_loss2, f_v2 = exe.run(program=test_program,
                                   feed=feeder.feed(test_data),
                                   fetch_list=[loss, fv2])
        self.assertAlmostEqual(test_loss1, test_loss2, delta=1e-5)
        self.assertAlmostEqual(f_v1.all(), f_v2.all(), delta=1e-5)
        w_freeze = np.array(fluid.global_scope().find_var('conv2d_1.w_0')
                            .get_tensor())
        self.assertEqual(np.sum(w_freeze), np.sum(w_quant))

        # Convert parameter to 8-bit.
        quant_transpiler.convert_to_int8(test_program, place)
        # Save the 8-bit parameter and model file.
        fluid.io.save_inference_model('model_8bit', ['image', 'label'], [loss],
                                      exe, test_program)
        # Test whether the 8-bit parameter and model file can be loaded successfully.
        [infer, feed, fetch] = fluid.io.load_inference_model('model_8bit', exe)
        # Check the loaded 8-bit weight.
        w_8bit = np.array(fluid.global_scope().find_var('conv2d_1.w_0.int8')
                          .get_tensor())

        self.assertEqual(w_8bit.dtype, np.int8)
        self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))

    def test_freeze_program_cuda(self):
        self.freeze_program(True)


if __name__ == '__main__':
    unittest.main()