grad_node_info.cc 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/autograd_meta.h"
18 19
#include "paddle/fluid/eager/utils.h"

20 21
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
22

23 24 25
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
26
#include "paddle/fluid/framework/var_type.h"
27

28 29 30 31 32 33
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
34
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
35 36 37 38
**/
namespace egr {

GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
39
  VLOG(6) << "Construct GradNodeBase";
40 41 42 43 44
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
  adj_edges_.resize(bwd_out_slot_num);
}

45 46 47 48 49 50 51
void GradNodeBase::AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id) {
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
52 53 54

  for (size_t i = 0; i < metas->size(); i++) {
    const auto& meta = (*metas)[i];
55 56 57
    // adj_edges has as same rank as fwd inputs, and record it's output rank
    // from
    // its pre-ops
58
    if (meta && !meta->StopGradient()) {
59
      auto node = meta->GetMutableGradNode();
60
      if (!node || !node.get()) {
61
        meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
62
      }
63 64 65

      adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                       meta->OutRankInfo());
66
    }
67 68 69
  }
}

70
void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) {
71 72 73 74 75 76
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
77

78
  if (meta && !meta->StopGradient()) {
79
    auto node = meta->GetMutableGradNode();
80
    if (!node || !node.get()) {
81
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
82
    }
83 84 85 86 87
    VLOG(6) << "Add Edges for slot: " << slot_id << ", the Edge is from "
            << this->name() << " to " << meta->GetMutableGradNode()->name();

    adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                     meta->OutRankInfo());
88
  }
89 90
}

91
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::InputMeta() const {
92 93 94
  return bwd_in_meta_;
}

95
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::OutputMeta() const {
96 97 98
  return bwd_out_meta_;
}

99
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
100
                                 size_t slot_rank) {
101
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
102 103 104 105 106 107
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
  meta.SetStopGradient(fwd_out_meta->StopGradient());

  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
    phi::DenseTensor* dense_tensor =
        static_cast<phi::DenseTensor*>(fwd_out.impl().get());

    PADDLE_ENFORCE_NE(
        dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
        paddle::platform::errors::Fatal(
            "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
            "which is illegal."));
    meta.SetTensorMeta(dense_tensor->meta());

    if (paddle::framework::IsComplexType(
            paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
      need_complex_to_real_ = true;
132
    }
133 134 135
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
136 137 138
  }
}

139 140 141 142
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
  size_t slot_size = fwd_out.size();
143 144 145 146 147 148
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
149
  auto& metas = bwd_in_meta_.at(slot_rank);
150
  // Init stop gradient vector before use to avoid push back
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
    if (fwd_out_meta->StopGradient()) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
      if (paddle::framework::IsComplexType(
              paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
192 193
}

194
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
195
                                  size_t slot_rank) {
196
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
197
  PADDLE_ENFORCE_LE(
198
      (slot_rank + 1), bwd_out_meta_.size(),
199 200 201 202
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
203
  auto& metas = bwd_out_meta_.at(slot_rank);
204
  // Init stop gradient vector before use to avoid push back
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
  } else {
    meta.SetStopGradient(true);
  }

  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
227
    }
228 229 230
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
231 232 233
  }
}

234 235 236
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
237
  PADDLE_ENFORCE_LE(
238
      slot_rank, (bwd_out_meta_.size() - 1),
239 240 241 242
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
243
  auto& metas = bwd_out_meta_.at(slot_rank);
244
  // Init stop gradient vector before use to avoid push back
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
    if (fwd_in_meta) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }

    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());

        PADDLE_ENFORCE_NE(dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
                          paddle::platform::errors::Fatal(
                              "Attempting to copy DenseTensorMeta with "
                              "phi::DataType::UNDEFINED,"
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
276
  }
277 278 279 280 281 282 283 284 285
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
286 287
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
288 289
}

290 291 292 293 294
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
295 296
}

297 298 299 300
const std::vector<std::vector<Edge>>& GradNodeBase::GetEdges() const {
  return adj_edges_;
}

301 302 303 304
std::vector<std::vector<paddle::experimental::Tensor>>
GradNodeBase::ApplyGradientHooks(
    const std::vector<std::vector<paddle::experimental::Tensor>>& tensors) {
  std::vector<std::vector<paddle::experimental::Tensor>> outs(tensors.size());
305 306 307 308 309
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
310 311 312 313 314 315 316 317 318 319 320 321

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

322
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
323
    slot_out.resize(tensors[slot_id].size());
324
    paddle::experimental::Tensor& out = slot_out[rank];
325
    if (!out.defined() || !out.initialized()) {
326
      out = (*hook)(tensors[slot_id][rank]);
327
    } else {
328
      // If more than one hook is registered, the input to the next hook func
329
      // should be the output of the previous hook
330
      out = (*hook)(out);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
    }
  }

  return outs;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
void GradNodeBase::HandleComplexGradToRealGrad(
    std::vector<std::vector<paddle::experimental::Tensor>>* out_grads) {
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

390
}  // namespace egr