cross_map_normal_op_gpu.cu 7.5 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_base.h"
#include "cross_map_normal_op.h"

namespace paddle {

__global__ void KeCMRNormFillScale(size_t imageSize, const real* in,
                                   real* scale, size_t channels,
                                   size_t height, size_t width, size_t size,
                                   real alpha) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < imageSize) {
    const int w = idx % width;
    const int h = (idx / width) % height;
    const int n = idx / width / height;
    const int offset = (n * channels * height + h) * width + w;

    in += offset;
    scale += offset;
    const int step = height * width;
    const int pre_pad = (size - 1) / 2;
    const int post_pad = size - pre_pad - 1;

    real accum = 0;
    int index = 0;
    while (index < channels + post_pad) {
      if (index < channels) {
        accum += in[index * step] * in[index * step];
      }
      if (index >= size) {
        accum -= in[(index - size) * step] * in[(index - size) * step];
      }
      if (index >= post_pad) {
        scale[(index - post_pad) * step] = 1. + accum * alpha;
      }
      ++index;
    }
  }
}

__global__ void KeCMRNormOutput(size_t inputSize, const real* in,
                                const real* scale, real negative_beta,
                                real* out) {
  const int index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < inputSize) {
    out[index] = in[index] * pow(scale[index], negative_beta);
  }
}

template <>
void CrossMapNormal<DEVICE_TYPE_GPU>::operator()(GpuMatrix& outputs,
                                                 GpuMatrix& denoms,
                                                 GpuMatrix& inputs,
                                                 size_t channels,
                                                 size_t imgSizeH,
                                                 size_t imgSizeW,
                                                 size_t sizeX,
                                                 real scale,
                                                 real pow) {
  CHECK(outputs.isContiguous());
  CHECK(inputs.isContiguous());
  CHECK(denoms.isContiguous());
  CHECK_EQ(outputs.getHeight(), inputs.getHeight());
  CHECK_EQ(outputs.getWidth(), inputs.getWidth());
  CHECK_EQ(outputs.getHeight(), denoms.getHeight());
  CHECK_EQ(outputs.getWidth(), denoms.getWidth());

  size_t numSample = inputs.getHeight();
  size_t numCols = inputs.getWidth();
  CHECK(imgSizeH * imgSizeW * channels == numCols);

  real* inputsData = inputs.getData();
  real* denomsData = denoms.getData();
  real* outputsData = outputs.getData();

  size_t imageSize = numSample * imgSizeH * imgSizeW;
  int blockSize = 1024;
  int gridSize = (imageSize + 1024 - 1) / 1024;
  KeCMRNormFillScale<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (imageSize, inputsData, denomsData,
    channels, imgSizeH, imgSizeW, sizeX, scale);

  size_t inputSize = numSample * imgSizeH * imgSizeW *channels;
  blockSize = 1024;
  gridSize = (inputSize + 1024 - 1) / 1024;
  KeCMRNormOutput<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (inputSize, inputsData, denomsData, -pow, outputsData);

  CHECK_SYNC("CrossMapNormalFwd");
}

__global__ void KeCMRNormDiff(size_t imageSize, const real* bottom_data,
                              const real* top_data, const real* scale,
                              const real* top_diff, size_t channels,
                              size_t height, size_t width, size_t size,
                              real negative_beta, real cache_ratio,
                              real* bottom_diff ) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < imageSize) {
    const int w = idx % width;
    const int h = (idx / width) % height;
    const int n = idx / width / height;
    const int offset = (n * channels * height + h) * width + w;
    bottom_data += offset;
    top_data += offset;
    scale += offset;
    top_diff += offset;
    bottom_diff += offset;

    const int step = height * width;
    const int pre_pad = size - (size + 1) / 2;
    const int post_pad = size - pre_pad - 1;

    int index = 0;
    real accum = 0;
    while (index < channels + post_pad) {
      if (index < channels) {
        accum += top_diff[index * step] * top_data[index * step] /
          scale[index * step];
      }
      if (index >= size) {
        accum -= top_diff[(index - size) * step] *
          top_data[(index - size) * step] / scale[(index - size) * step];
      }
      if (index >= post_pad) {
        bottom_diff[(index - post_pad) * step] +=
          top_diff[(index - post_pad) * step] *
          pow(scale[(index - post_pad) * step], negative_beta) - cache_ratio *
          bottom_data[(index - post_pad) * step] * accum;
      }
      ++index;
    }
  }
}

template <>
void CrossMapNormalGrad<DEVICE_TYPE_GPU>::operator()(GpuMatrix& inputsGrad,
                                                     GpuMatrix& inputsValue,
                                                     GpuMatrix& outputsGrad,
                                                     GpuMatrix& outputsValue,
                                                     GpuMatrix& denoms,
                                                     size_t channels,
                                                     size_t imgSizeH,
                                                     size_t imgSizeW,
                                                     size_t sizeX,
                                                     real scale,
                                                     real pow) {
  CHECK(inputsGrad.isContiguous());
  CHECK(outputsGrad.isContiguous());
  CHECK(denoms.isContiguous());
  CHECK(inputsValue.isContiguous());
  CHECK(outputsValue.isContiguous());
  CHECK_EQ(inputsGrad.getHeight(), outputsGrad.getHeight());
  CHECK_EQ(inputsGrad.getWidth(), outputsGrad.getWidth());
  CHECK_EQ(inputsGrad.getHeight(), denoms.getHeight());
  CHECK_EQ(inputsGrad.getWidth(), denoms.getWidth());
  CHECK_EQ(inputsGrad.getHeight(), inputsValue.getHeight());
  CHECK_EQ(inputsGrad.getWidth(), inputsValue.getWidth());
  CHECK_EQ(inputsGrad.getHeight(), outputsValue.getHeight());
  CHECK_EQ(inputsGrad.getWidth(), outputsValue.getWidth());

  size_t numSample = inputsGrad.getHeight();
  size_t numCols = inputsGrad.getWidth();
  CHECK(imgSizeH * imgSizeW * channels == numCols);

  size_t imageSize = numSample * imgSizeH * imgSizeW;
  real* inputsGradData = inputsGrad.getData();
  real* inputsData = inputsValue.getData();
  real* denomsData = denoms.getData();
  real* outputsGradData = outputsGrad.getData();
  real* outputsData = outputsValue.getData();

  int blockSize = 1024;
  int gridSize = (imageSize + 1024 - 1) / 1024;
  KeCMRNormDiff <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (imageSize, inputsData, outputsData, denomsData, outputsGradData, channels,
      imgSizeH, imgSizeW, sizeX, -pow, 2.0f * pow * scale, inputsGradData);
  CHECK_SYNC("KeCMRNormDiff");
}

}  // namespace paddle