optimizer.py 8.1 KB
Newer Older
Q
qiaolongfei 已提交
1
import py_paddle.swig_paddle as swig_api
Y
Yu Yang 已提交
2

Q
qiaolongfei 已提交
3
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
Y
Yu Yang 已提交
4 5 6 7 8 9
import paddle.trainer_config_helpers.optimizers as v1_optimizers
"""
Optimizers(update equation) for SGD method.

TODO(yuyang18): Complete comments.
"""
Q
qiaolongfei 已提交
10

L
Luo Tao 已提交
11 12 13 14
__all__ = [
    'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta',
    'RMSProp', 'ModelAverage', 'L2Regularization'
]
Q
qiaolongfei 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


class Optimizer(object):
    def __init__(self, **kwargs):
        if 'batch_size' in kwargs:
            del kwargs['batch_size']  # not important for python library.

        def __impl__():
            v1_optimizers.settings(batch_size=1, **kwargs)

        self.__opt_conf_proto__ = config_parser_utils.parse_optimizer_config(
            __impl__)
        self.__opt_conf__ = swig_api.OptimizationConfig.createFromProto(
            self.__opt_conf_proto__)

    def enable_types(self):
        """
        get enable_types for each optimizer.
        enable_types = [value, gradient, momentum, etc]
        For each optimizer(SGD, Adam), GradientMachine should enable different
        buffers.
        """
        tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__)
        assert isinstance(tmp, swig_api.ParameterOptimizer)
        return tmp.getParameterTypes()

    def create_local_updater(self):
        return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__)

    def create_remote_updater(self, pass_num):
        return swig_api.ParameterUpdater.createRemoteUpdater(self.__opt_conf__,
                                                             pass_num)


L
Luo Tao 已提交
49
class Momentum(Optimizer):
Q
qijun 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    """
    SGD Optimizer.

    SGD is an optimization method, trying to find a neural network that
    minimize the "cost/error" of it by iteration. In paddle's implementation
    SGD Optimizer is synchronized, which means all gradients will be wait to
    calculate and reduced into one gradient, then do optimize operation.

    The neural network consider the learning problem of minimizing an objective
    function, that has the form of a sum

    ..  math::

        Q(w) = \\sum_{i}^{n} Q_i(w)

    The value of function Q sometimes is the cost of neural network (Mean
    Square Error between prediction and label for example). The function Q is
    parametrised by w, the weight/bias of neural network. And weights is what to
    be learned. The i is the i-th observation in (trainning) data.

    So, the SGD method will optimize the weight by

    ..  math::

        w = w - \\eta \\nabla Q(w) = w - \\eta \\sum_{i}^{n} \\nabla Q_i(w)

    where :math:`\\eta` is learning rate. And :math:`n` is batch size.
    """

L
Luo Tao 已提交
79 80
    def __init__(self, momentum=None, sparse=False, **kwargs):
        learning_method = v1_optimizers.MomentumOptimizer(
Y
Yu Yang 已提交
81
            momentum=momentum, sparse=sparse)
L
Luo Tao 已提交
82 83 84 85
        super(Momentum, self).__init__(
            learning_method=learning_method, **kwargs)


Q
qiaolongfei 已提交
86
class Adam(Optimizer):
Q
qijun 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    """
    Adam optimizer.
    The details of please refer `Adam: A Method for Stochastic Optimization
    <https://arxiv.org/abs/1412.6980>`_

    ..  math::

        m(w, t) & = \\beta_1 m(w, t-1) + (1 - \\beta_1) \\nabla Q_i(w) \\\\
        v(w, t) & = \\beta_2 v(w, t-1) + (1 - \\beta_2)(\\nabla Q_i(w)) ^2 \\\\
        w & = w - \\frac{\\eta}{\\sqrt{v(w,t) + \\epsilon}}

    :param beta1: the :math:`\\beta_1` in equation.
    :type beta1: float
    :param beta2: the :math:`\\beta_2` in equation.
    :type beta2: float
    :param epsilon: the :math:`\\epsilon` in equation. It is used to prevent
                        divided by zero.
    :type epsilon: float
    """

Q
qiaolongfei 已提交
107 108 109 110 111 112 113
    def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, **kwargs):
        learning_method = v1_optimizers.AdamOptimizer(
            beta1=beta1, beta2=beta2, epsilon=epsilon)
        super(Adam, self).__init__(learning_method=learning_method, **kwargs)


class Adamax(Optimizer):
Q
qijun 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    """
    Adamax optimizer.

    The details of please refer this `Adam: A Method for Stochastic Optimization
    <https://arxiv.org/abs/1412.6980>`_

    ..  math::

        m_t & = \\beta_1 * m_{t-1} + (1-\\beta_1)* \\nabla Q_i(w) \\\\
        u_t & = max(\\beta_2*u_{t-1}, abs(\\nabla Q_i(w))) \\\\
        w_t & = w_{t-1} - (\\eta/(1-\\beta_1^t))*m_t/u_t

    :param beta1: the :math:`\\beta_1` in the equation.
    :type beta1: float
    :param beta2: the :math:`\\beta_2` in the equation.
    :type beta2: float
    """

Q
qiaolongfei 已提交
132 133 134 135 136 137
    def __init__(self, beta1=0.9, beta2=0.999, **kwargs):
        learning_method = v1_optimizers.AdamaxOptimizer(
            beta1=beta1, beta2=beta2)
        super(Adamax, self).__init__(learning_method=learning_method, **kwargs)


L
Luo Tao 已提交
138
class AdaGrad(Optimizer):
Q
qijun 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
    """
    Adagrad(for ADAptive GRAdient algorithm) optimizer.

    For details please refer this `Adaptive Subgradient Methods for
    Online Learning and Stochastic Optimization
    <http://www.magicbroom.info/Papers/DuchiHaSi10.pdf>`_.

    ..  math::

        G &= \\sum_{\\tau=1}^{t} g_{\\tau} g_{\\tau}^T \\\\
        w & = w - \\eta diag(G)^{-\\frac{1}{2}} \\circ g
    """

L
Luo Tao 已提交
152 153 154 155 156 157
    def __init__(self, **kwargs):
        learning_method = v1_optimizers.AdaGradOptimizer()
        super(AdaGrad, self).__init__(learning_method=learning_method, **kwargs)


class DecayedAdaGrad(Optimizer):
Q
qijun 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    """
    AdaGrad method with decayed sum gradients. The equations of this method
    show as follow.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= 1/sqrt( ( E(g_t^2) + \\epsilon )

    :param rho: The :math:`\\rho` parameter in that equation
    :type rho: float
    :param epsilon: The :math:`\\epsilon` parameter in that equation.
    :type epsilon: float
    """

L
Luo Tao 已提交
173 174 175 176 177 178 179 180
    def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
        learning_method = v1_optimizers.DecayedAdaGradOptimizer(
            rho=rho, epsilon=epsilon)
        super(DecayedAdaGrad, self).__init__(
            learning_method=learning_method, **kwargs)


class AdaDelta(Optimizer):
Q
qijun 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    """
    AdaDelta method. The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    :param rho: :math:`\\rho` in equation
    :type rho: float
    :param epsilon: :math:`\\rho` in equation
    :type epsilon: float
    """
Q
qijun 已提交
198

L
Luo Tao 已提交
199 200 201 202 203 204 205 206
    def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
        learning_method = v1_optimizers.AdaDeltaOptimizer(
            rho=rho, epsilon=epsilon)
        super(AdaDelta, self).__init__(
            learning_method=learning_method, **kwargs)


class RMSProp(Optimizer):
Q
qijun 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    """
    RMSProp(for Root Mean Square Propagation) optimizer. For details please
    refer this `slide <http://www.cs.toronto.edu/~tijmen/csc321/slides/
    lecture_slides_lec6.pdf>`_.

    The equations of this method as follows:

    ..  math::

        v(w, t) & = \\rho v(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\
        w & = w - \\frac{\\eta} {\\sqrt{v(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    :param rho: the :math:`\\rho` in the equation. The forgetting factor.
    :type rho: float
    :param epsilon: the :math:`\\epsilon` in the equation.
    :type epsilon: float
    """

L
Luo Tao 已提交
225 226 227 228 229 230 231 232 233
    def __init__(self, rho=0.95, epsilon=1e-6, **kwargs):
        learning_method = v1_optimizers.RMSPropOptimizer(
            rho=rho, epsilon=epsilon)
        super(RMSProp, self).__init__(learning_method=learning_method, **kwargs)


ModelAverage = v1_optimizers.ModelAverage
L2Regularization = v1_optimizers.L2Regularization

Q
qiaolongfei 已提交
234 235
if __name__ == '__main__':
    swig_api.initPaddle('--use_gpu=false')
L
Luo Tao 已提交
236 237 238 239 240 241 242 243
    for opt in [
            Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(),
            AdaDelta(), RMSProp(), Adam(
                model_average=ModelAverage(average_window=0.5),
                regularization=L2Regularization(rate=0.5),
                gradient_clipping_threshold=25)
    ]:
        print opt, opt.enable_types()