matmul_v2_op.h 24.5 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
F
ForFishes 已提交
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

#ifdef __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
void ReduceSumForMatmulGrad(const Tensor* input, Tensor* output,
                            const std::vector<int>& reduce_dims,
                            const paddle::framework::ExecutionContext& ctx) {
  if (reduce_dims.empty()) {
    // FIXME maybe reduce this copy operation
    framework::TensorCopySync(*input, ctx.GetPlace(), output);
    return;
  }
#ifdef __NVCC__
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
      *input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
      IdentityFunctor<T>(), stream);
#else
  ReduceKernelFunctor<DeviceContext, T, ops::SumFunctor>(
      input, output, reduce_dims, true, false, ctx)
      .template apply<T>();
#endif
}

static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims,
                                 const int y_ndim, const std::int64_t* y_dims,
                                 std::int64_t* x_bd_dims,
                                 std::int64_t* y_bd_dims,
                                 std::int64_t* out_bd_dims) {
W
wanghuancoder 已提交
69
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
  std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1);
  std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1);
  std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim);
  std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim);

  for (int i = 0; i < ndim; ++i) {
    PADDLE_ENFORCE_EQ(
        x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1,
        true, platform::errors::InvalidArgument(
                  "Input(X) and Input(Y) has error dim."));
    if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) {
      out_bd_dims[i] = 0;
    } else {
W
wanghuancoder 已提交
83
      out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]);
S
ShenLiang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    }
  }
}

static int64_t GetIndexMessage(const int n, const int64_t* dims,
                               const int64_t* index) {
  int64_t sum = 0;
  for (int i = 0; i < n; ++i) {
    if (dims[i] > 1) {
      sum = sum * dims[i] + index[i];
    }
  }
  return sum;
}

static void IndexIncreaseFromDims(const int ndim, const int64_t* dims,
                                  int64_t* index) {
  for (int i = ndim - 1; i >= 0; --i) {
    ++index[i];
    if (index[i] >= dims[i]) {
      index[i] -= dims[i];
    } else {
      break;
    }
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y,
                    const std::vector<std::int64_t>& x_dims,
                    const std::vector<std::int64_t>& y_dims, Tensor* Out,
                    bool trans_x, bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const int x_ndim = x_dims.size();
  const int y_ndim = y_dims.size();

  // get data ptr
  const T* x_data = X->data<T>();
  const T* y_data = Y->data<T>();

  if (x_ndim == 1 && y_ndim == 1) {
    PADDLE_ENFORCE_EQ(X->numel(), Y->numel(),
                      platform::errors::InvalidArgument(
                          "X's numbers is not equal to Y's numbers,"
                          "when X/Y's dims =1"));
    VLOG(3) << "MatMul's case 1";
    Out->Resize({1});
    Out->mutable_data<T>(ctx.GetPlace());
    auto out_eigen = framework::EigenScalar<T>::From(*Out);
    auto x_eigen = framework::EigenVector<T>::Flatten(*X);
    auto y_eigen = framework::EigenVector<T>::Flatten(*Y);

    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
    out_eigen.device(dev) = (x_eigen * y_eigen).sum();
    return;
  }

  auto& dev_ctx = ctx.template device_context<DeviceContext>();
  auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

  if (x_ndim == 1) {
    const int N = X->numel();
    if (trans_y) {
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 1], N,
          platform::errors::InvalidArgument("Input(Y) has error dim."));
    } else {
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 2], N,
          platform::errors::InvalidArgument("Input(Y) has error dim."));
    }
    std::vector<std::int64_t> out_dims(y_ndim - 1);
    if (trans_y) {
      std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin());
    } else {
      std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin());
      out_dims.back() = y_dims.back();
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());
    if (trans_y) {
      const int M = Y->numel() / N;
      VLOG(3) << "MatMul's case 2";
S
ShenLiang 已提交
167 168
      blas.GEMV(false, M, N, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
169 170 171 172 173
    } else {
      const int M = y_dims[y_ndim - 1];
      const int batch_size = Y->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 3";
S
ShenLiang 已提交
174 175
        blas.GEMV(true, N, M, static_cast<T>(1), y_data, x_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
176 177
      } else {
        VLOG(3) << "MatMul's case 4";
S
ShenLiang 已提交
178 179 180
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         y_data, x_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
      }
    }
    return;
  }

  if (y_ndim == 1) {
    const int N = Y->numel();
    if (trans_x) {
      PADDLE_ENFORCE_EQ(
          x_dims[x_ndim - 2], N,
          platform::errors::InvalidArgument("Input(X) has error dim."));
    } else {
      PADDLE_ENFORCE_EQ(
          x_dims[x_ndim - 1], N,
          platform::errors::InvalidArgument("Input(X) has error dim."));
    }
    std::vector<std::int64_t> out_dims(x_ndim - 1);
    if (trans_x) {
      std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin());
      out_dims.back() = x_dims.back();
    } else {
      std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin());
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());

    if (trans_x) {
      const int M = x_dims[x_ndim - 1];
      const int batch_size = X->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 5";
S
ShenLiang 已提交
212 213
        blas.GEMV(true, N, M, static_cast<T>(1), x_data, y_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
214 215
      } else {
        VLOG(3) << "MatMul's case 6";
S
ShenLiang 已提交
216 217 218
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         x_data, y_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
219 220 221 222
      }
    } else {
      const int M = X->numel() / N;
      VLOG(3) << "MatMul's case 7";
S
ShenLiang 已提交
223 224
      blas.GEMV(false, M, N, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238
    }
    return;
  }

  const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2];
  const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
  if (trans_y) {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K, platform::errors::InvalidArgument(
                                                 "Input(X) has error dim."));
  } else {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K, platform::errors::InvalidArgument(
                                                 "Input(X) has error dim."));
  }
  const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
W
wanghuancoder 已提交
239
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  std::vector<std::int64_t> x_broadcast_dims(ndim);
  std::vector<std::int64_t> y_broadcast_dims(ndim);
  std::vector<std::int64_t> out_broadcast_dims(ndim);

  GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(),
                       x_broadcast_dims.data(), y_broadcast_dims.data(),
                       out_broadcast_dims.data());

  out_broadcast_dims[ndim - 2] = M;
  out_broadcast_dims[ndim - 1] = N;

  Out->Resize(framework::make_ddim(out_broadcast_dims));
  Out->mutable_data<T>(ctx.GetPlace());

  const int batch_dim = ndim - 2;
  // broadcast message
  const bool is_broadcast_dims = !std::equal(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim,
      y_broadcast_dims.cbegin());

  const std::int64_t x_batch_size = std::accumulate(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t y_batch_size = std::accumulate(
      y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t out_batch_size = std::accumulate(
      out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  if (out_batch_size == 0) return;
  if (x_batch_size == 1 && y_batch_size == 1) {
    VLOG(3) << "MatMul's case 8";
    blas.GEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
273 274
              trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast<T>(1),
              x_data, y_data, static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
275 276 277
  } else if (x_batch_size == 1) {
    if (M == 1 && trans_y) {
      VLOG(3) << "MatMul's case 9";
S
ShenLiang 已提交
278 279
      blas.GEMV(false, y_batch_size * N, K, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
280 281 282
    } else {
      VLOG(3) << "MatMul's case 10";
      blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
283 284 285
                       trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, 0, K * N);
S
ShenLiang 已提交
286 287 288 289 290
    }
  } else if (y_batch_size == 1) {
    if (!trans_x) {
      VLOG(3) << "MatMul's case 11";
      blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
291 292
                x_batch_size * M, N, K, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
293 294 295
    } else {
      VLOG(3) << "MatMul's case 12";
      blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K,
S
ShenLiang 已提交
296 297
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, M * K, 0);
S
ShenLiang 已提交
298 299 300 301
    }
  } else if (!is_broadcast_dims) {
    VLOG(3) << "MatMul's case 13";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
302 303 304
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                     Out->data<T>(), out_batch_size, M * K, K * N);
S
ShenLiang 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  } else {
    // in the case, can't use stridedgemm
    std::vector<const T*> x_ptr(out_batch_size);
    std::vector<const T*> y_ptr(out_batch_size);
    std::vector<T*> out_ptr(out_batch_size);
    std::vector<std::int64_t> index(batch_dim, 0);
    for (std::int64_t i = 0; i < out_batch_size; ++i) {
      // using the index to get offset
      const std::int64_t x_index =
          GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data());
      const std::int64_t y_index =
          GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data());

      x_ptr[i] = x_data + x_index * M * K;
      y_ptr[i] = y_data + y_index * K * N;
      out_ptr[i] = Out->data<T>() + i * M * N;
      IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data());
    }
    VLOG(3) << "MatMul's case 14";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
325 326 327
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_ptr.data(), y_ptr.data(),
                     static_cast<T>(0), out_ptr.data(), out_batch_size);
S
ShenLiang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y, Tensor* Out, bool trans_x,
                    bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const std::vector<std::int64_t> x_dims = vectorize(X->dims());
  const std::vector<std::int64_t> y_dims = vectorize(Y->dims());
  MatMulFunction<DeviceContext, T>(X, Y, x_dims, y_dims, Out, trans_x, trans_y,
                                   ctx);
}

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    MatMulFunction<DeviceContext, T>(X, Y, Out, trans_x, trans_y, ctx);
  }
};

F
ForFishes 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context,
                                             const framework::Tensor& input) {
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

S
ShenLiang 已提交
447 448 449
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
F
ForFishes 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  void MatMul(const framework::ExecutionContext& context,
              const framework::Tensor& a, bool trans_a,
              const framework::Tensor& b, bool trans_b,
              framework::Tensor* out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
    if (a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, static_cast<T>(1), out,
                static_cast<T>(0));
  }

  void CalcInputGrad(const framework::ExecutionContext& context,
                     const framework::Tensor& a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor& b,
                     bool trans_b, bool is_fold_init_dims_b,
                     framework::Tensor* out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto& ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

S
ShenLiang 已提交
491
  void Compute(const framework::ExecutionContext& ctx) const override {
F
ForFishes 已提交
492 493 494 495 496 497
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");

    auto x = *ctx.Input<framework::Tensor>("X");
    auto y = *ctx.Input<framework::Tensor>("Y");
    auto dout = *ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
S
ShenLiang 已提交
498 499

    // get dims
F
ForFishes 已提交
500 501 502
    std::vector<std::int64_t> x_dims = vectorize(x.dims());
    std::vector<std::int64_t> y_dims = vectorize(y.dims());
    std::vector<std::int64_t> dout_dims = vectorize(dout.dims());
S
ShenLiang 已提交
503 504 505 506 507 508 509 510

    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int ndim = dout_dims.size();

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

F
ForFishes 已提交
511
    // Case1 : x's or y's dim = 1
S
ShenLiang 已提交
512 513 514
    if (x_ndim == 1 && y_ndim == 1) {
      if (dx) dx->mutable_data<T>(ctx.GetPlace());
      if (dy) dy->mutable_data<T>(ctx.GetPlace());
F
ForFishes 已提交
515 516
      if (dout.numel() == 1) {
        DotGradFunction<DeviceContext, T>(&x, &y, &dout, dx, dy, ctx);
S
ShenLiang 已提交
517 518 519 520
        return;
      }
    }

F
ForFishes 已提交
521 522 523 524 525 526 527 528
    bool is_broadcast = true;
    if (x_ndim <= 2 || y_ndim <= 2) {
      is_broadcast = false;
    } else if (x_ndim != y_ndim) {
      is_broadcast = true;
    } else {
      is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2,
                                 y_dims.cbegin());
S
ShenLiang 已提交
529 530
    }

F
ForFishes 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    // Case2: no broadcast or no batch size, it aims to speed and it is same as
    // matmul in old version.
    if (!is_broadcast) {
      ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
      framework::DDim dx_dims;
      if (dx) {
        dx_dims = dx->dims();
        if (dx_dims != x.dims()) {
          dx->Resize(x.dims());
        }
      }

      framework::DDim dy_dims;
      if (dy) {
        dy_dims = dy->dims();
        if (dy_dims != y.dims()) {
          dy->Resize(y.dims());
        }
      }
      if (transpose_x && transpose_y) {
        CalcInputGrad(ctx, y, true, true, dout, true, false, dx);
        CalcInputGrad(ctx, dout, true, true, x, true, false, dy);
      } else if (transpose_x) {
        CalcInputGrad(ctx, y, false, false, dout, true, false, dx);
        CalcInputGrad(ctx, x, false, false, dout, false, true, dy);
      } else if (transpose_y) {
        CalcInputGrad(ctx, dout, false, false, y, false, true, dx);
        CalcInputGrad(ctx, dout, true, true, x, false, true, dy);
S
ShenLiang 已提交
559
      } else {
F
ForFishes 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572
        CalcInputGrad(ctx, dout, false, false, y, true, false, dx);
        CalcInputGrad(ctx, x, true, true, dout, false, true, dy);
      }

      if (dx) {
        if (dx_dims != x.dims()) {
          dx->Resize(dx_dims);
        }
      }
      if (dy) {
        if (dy_dims != y.dims()) {
          dy->Resize(dy_dims);
        }
S
ShenLiang 已提交
573 574
      }
    } else {
F
ForFishes 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
      // Case3: broadcast. It need cost much time to reduce sum for the
      // broadcast and wastes the memory.
      // So we should avoid the case in reality.
      VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
                 "wastes the memory. So we should avoid the case in reality";
      Tensor dx_help, dy_help;
      if (transpose_x) {
        if (transpose_y) {
          // X'Y': dA = Y'G', dB = G'X'
          if (dx)
            MatMulFunction<DeviceContext, T>(&y, &dout, y_dims, dout_dims,
                                             &dx_help, true, true, ctx);
          if (dy)
            MatMulFunction<DeviceContext, T>(&dout, &x, dout_dims, x_dims,
                                             &dy_help, true, true, ctx);
        } else {
          // X'Y: dX = YG', dY = XG
          if (dx)
            MatMulFunction<DeviceContext, T>(&y, &dout, y_dims, dout_dims,
                                             &dx_help, false, true, ctx);
          if (dy)
            MatMulFunction<DeviceContext, T>(&x, &dout, x_dims, dout_dims,
                                             &dy_help, false, false, ctx);
        }
S
ShenLiang 已提交
599
      } else {
F
ForFishes 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        if (transpose_y) {
          // XY': dX = GY, dY = G'X
          if (dx)
            MatMulFunction<DeviceContext, T>(&dout, &y, dout_dims, y_dims,
                                             &dx_help, false, false, ctx);
          if (dy)
            MatMulFunction<DeviceContext, T>(&dout, &x, dout_dims, x_dims,
                                             &dy_help, true, false, ctx);
        } else {
          // XY: dX = GY', dY = X'G
          if (dx)
            MatMulFunction<DeviceContext, T>(&dout, &y, dout_dims, y_dims,
                                             &dx_help, false, true, ctx);
          if (dy)
            MatMulFunction<DeviceContext, T>(&x, &dout, x_dims, dout_dims,
                                             &dy_help, true, false, ctx);
        }
S
ShenLiang 已提交
617
      }
F
ForFishes 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

      // get help dims
      const std::vector<std::int64_t> dx_help_dims = vectorize(dx_help.dims());
      const std::vector<std::int64_t> dy_help_dims = vectorize(dy_help.dims());

      std::vector<std::int64_t> dx_broadcast_dims(ndim);
      std::vector<std::int64_t> dy_broadcast_dims(ndim);

      std::fill(dx_broadcast_dims.data(),
                dx_broadcast_dims.data() + ndim - x_ndim, 1);
      std::fill(dy_broadcast_dims.data(),
                dy_broadcast_dims.data() + ndim - y_ndim, 1);
      std::copy(x_dims.data(), x_dims.data() + x_ndim,
                dx_broadcast_dims.data() + ndim - x_ndim);
      std::copy(y_dims.data(), y_dims.data() + y_ndim,
                dy_broadcast_dims.data() + ndim - y_ndim);

      std::vector<int> dx_reduce_dims;
      std::vector<int> dy_reduce_dims;
      for (int idx = 0; idx <= ndim - 3; idx++) {
        if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) {
          dx_reduce_dims.push_back(idx);
        }
        if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) {
          dy_reduce_dims.push_back(idx);
        }
      }

      // reduce sum to get grad by ReduceSum
      if (dx) {
        dx->Resize(dx_help.dims());
        ReduceSumForMatmulGrad<DeviceContext, T>(&dx_help, dx, dx_reduce_dims,
                                                 ctx);
        dx->Resize(x.dims());
S
ShenLiang 已提交
652
      }
F
ForFishes 已提交
653 654 655 656 657
      if (dy) {
        dy->Resize(dy_help.dims());
        ReduceSumForMatmulGrad<DeviceContext, T>(&dy_help, dy, dy_reduce_dims,
                                                 ctx);
        dy->Resize(y.dims());
S
ShenLiang 已提交
658 659 660 661 662 663 664
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle