data_layout_transform.cc 7.3 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include <string>
17
#include <vector>
18

Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
mozga-intel 已提交
20
#ifdef PADDLE_WITH_MKLDNN
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
mozga-intel 已提交
22
#endif
23 24 25 26

namespace paddle {
namespace framework {

27 28 29 30 31 32 33 34 35 36 37 38
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
  PADDLE_ENFORCE_NE(from, to,
                    "layout transform should transform different layout");
  if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
    return {0, 2, 3, 1};
  } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
    return {0, 3, 1, 2};
  } else {
    PADDLE_THROW("unsupported transform");
  }
}

39 40 41 42 43 44 45 46 47 48 49
struct CastDataLayout {
  CastDataLayout(const platform::DeviceContext* ctx,
                 const std::vector<int>& axis, const framework::Tensor& in,
                 framework::Tensor* out)
      : in_(in), out_(out), ctx_(ctx), axis_(axis) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;
  const std::vector<int> axis_;

  template <typename T>
D
dzhwinter 已提交
50
  void apply() {
51 52 53 54 55 56 57 58 59 60 61 62
    auto place = ctx_->GetPlace();

    if (platform::is_cpu_place(place)) {
      operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans4(*context, in_, out_, axis_);
    } else {
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

63 64 65
void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out) {
66
  PADDLE_ENFORCE(
67 68
      platform::places_are_same_class(kernel_type_for_var.place_,
                                      expected_kernel_type.place_),
69 70
      "TransDataLayout only support DataLayout transform on same place!");

71 72 73
  PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");

  auto& pool = platform::DeviceContextPool::Instance();
74

75
  auto src_dim = in.dims();
76 77
  std::vector<int64_t> dst_dim;

78 79
  auto axis = GetAxis(kernel_type_for_var.data_layout_,
                      expected_kernel_type.data_layout_);
80 81 82 83 84
  dst_dim.resize(axis.size());
  for (size_t i = 0; i < axis.size(); i++) {
    dst_dim[i] = src_dim[axis[i]];
  }

85 86
  out->Resize(make_ddim(dst_dim));
  out->mutable_data(expected_kernel_type.place_, in.type());
87

88
  framework::VisitDataType(
Y
Yu Yang 已提交
89
      in.type(),
90
      CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));
91

92
  out->set_layout(expected_kernel_type.data_layout_);
93 94
}

M
mozga-intel 已提交
95 96 97 98 99 100 101 102 103 104
#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;

void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
  switch (type) {
    case mkldnn::memory::data_type::f32:
      return platform::to_void_cast(tensor.data<float>());
    case mkldnn::memory::data_type::s8:
Y
Yu Yang 已提交
105
      return platform::to_void_cast(tensor.data<int8_t>());
M
mozga-intel 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119
    case mkldnn::memory::data_type::u8:
      return platform::to_void_cast(tensor.data<unsigned char>());
    case mkldnn::memory::data_type::s32:
      return platform::to_void_cast(tensor.data<int32_t>());
    default:
      PADDLE_THROW("wrong mkldnn type provided");
  }
}

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out) {
  auto in_layout = kernel_type_for_var.data_layout_;
  auto out_layout = expected_kernel_type.data_layout_;
120
  auto place = expected_kernel_type.place_;
M
mozga-intel 已提交
121 122 123 124 125 126

  PADDLE_ENFORCE(
      in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
      "TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
      "non-MKLDNN");

127 128 129
  innerTransDataLayoutFromMKLDNN(in_layout,
                                 paddle::platform::get_cur_paddle_data_layout(),
                                 in, out, place);
130 131 132 133 134
}

void innerTransDataLayoutFromMKLDNN(DataLayout in_layout, DataLayout out_layout,
                                    const Tensor& in, Tensor* out,
                                    platform::Place place) {
A
Adam 已提交
135
  PADDLE_ENFORCE_NE(in.format(), MKLDNNMemoryFormat::undef,
136 137 138
                    platform::errors::InvalidArgument(
                        "Input tensor format is invalid. Input tensor should "
                        "have specified memory format."));
139
  PADDLE_ENFORCE_NE(in.format(), MKLDNNMemoryFormat::any,
140 141 142
                    platform::errors::InvalidArgument(
                        "Input tensor format is invalid. Input tensor should "
                        "have specified memory format."));
M
mozga-intel 已提交
143 144 145 146 147

  // Set default as NCHW in case not specified
  out_layout =
      out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;

148
  auto& pool = platform::DeviceContextPool::Instance();
149
  auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(pool.Get(place));
150 151
  auto& cpu_engine = dev_ctx->GetEngine();

A
Adam 已提交
152
  auto in_tz = paddle::framework::vectorize<int64_t>(in.dims());
153
  auto out_tz = in_tz;
M
mozga-intel 已提交
154 155

  memory::data_type in_type = ToMKLDNNDataType(in.type());
A
Adam 已提交
156 157
  PADDLE_ENFORCE_NE(in_type, memory::data_type::undef,
                    "Input tensor type is not supported: %s", in.type());
M
mozga-intel 已提交
158

159 160 161 162
  auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format());
  auto out_format =
      platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout));

M
mozga-intel 已提交
163 164 165
  // output tensor has the same dims as input. Reorder don't change dims
  out->Resize(in.dims());

166
  if (in_format != out_format) {
167
    void* in_data = GetDataFromTensor(in, in_type);
A
Adam 已提交
168 169
    const std::string key =
        platform::CreateKey(in_tz, in_format, out_format, in_type);
M
mozga-intel 已提交
170

171 172
    platform::ReorderMKLDNNHandler handler(in_tz, in.type(), in_type, *dev_ctx,
                                           cpu_engine, key);
M
mozga-intel 已提交
173

174 175
    auto reorder_src_memory_p = handler.AcquireSrcMemory(in_format, in_data);
    auto reorder_dst_memory_p =
176
        handler.AcquireDstMemory(out, out_format, place);
177 178 179
    auto reorder_p =
        handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p);

A
Adam 已提交
180 181 182
    mkldnn::stream astream(cpu_engine);
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();
183 184 185
  } else {
    out->ShareDataWith(in);
  }
186 187 188 189 190 191
  // For exepected NHWC data format we need to reshape the Output tensor
  // As MKL-DNN description was in NCHW and paddle is expecting NHWC
  if (out_layout == DataLayout::kNHWC) {
    std::rotate(out_tz.begin() + 1, out_tz.begin() + 2, out_tz.end());
    out->Resize(framework::make_ddim(out_tz));
  }
M
mozga-intel 已提交
192
  out->set_layout(out_layout);
193
  // reset format since the out tensor will be feed to non-MKLDNN OPkernel
A
Adam 已提交
194
  out->set_format(MKLDNNMemoryFormat::undef);
M
mozga-intel 已提交
195
}
196
#endif
M
mozga-intel 已提交
197

198 199
}  // namespace framework
}  // namespace paddle