lookup_remote_table.h 6.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <future>  // NOLINT
#include <ostream>
#include <vector>
#include <set>
#include <unordered_map>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

inline size_t GetSectionIndex(int64_t id, const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (row < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

inline std::vector<int64_t> ToAbsoluteSection(
        const std::vector<int64_t>& height_sections) {
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

inline std::vector<std::vector<int64_t>> SplitIds(
        const std::string& id_name,
        const std::vector<int64_t>& height_section,
        framework::Scope* scope) {
  auto& id_tensor = scope->Var(id_name)->Get<framework::LoDTensor>();
  auto* id_data = id_tensor.data<int64_t>();
  std::set<int64_t> all_ids;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    all_ids.insert(id_data[i]);
  }
  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
}

inline void SplitIdsIntoMultipleVarsBySection(
        const std::string& id_name,
        const std::vector<std::string>& in_var_names,
        const std::vector<int64_t>& height_section,
        const std::vector<std::vector<int64_t>>& splited_ids,
        framework::Scope* scope) {
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, "");

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor = scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(framework::make_ddim({ids.size(), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

inline void MergeMultipleVarsIntoOnBySection(
        const std::string& id_name,
        const std::string& out_name,
        const std::vector<std::string>& out_var_names,
        const std::vector<int64_t>& height_section,
        const std::vector<std::vector<int64_t>>& splited_ids,
        framework::Scope* scope) {
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, "");

  auto cpu_place = platform::CPUPlace();

  auto abs_sections = ToAbsoluteSection(height_section);
  auto& id_tensor = scope->Var(id_name)->Get<framework::LoDTensor>();
  auto* id_data = id_tensor.data<int64_t>();
  std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    id_to_offset[id_data[i]].push_back(i);
  }

  auto& out_tensor = scope->Var(out_name)->Get<framework::LoDTensor>();
  auto* out_tensor_data = out_tensor.mutable_data<float>();

  for (size_t section_idx = 0; section_idx < out_var_names.size(); ++section_idx) {
    auto& ids_in_this_section = splited_ids[section_idx];
    auto& prefetch_out_var = scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
    const auto* out_var_data = prefetch_out_var.mutable_data<float>();
    auto& dims = prefetch_out_var.dims();

    PADDLE_ENFORCE_EQ(dims.size(), 2, "");
    PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

    auto row_numel = dims[1];

    for (size_t i = 0; i < dims[0]; ++i) {
      auto id = ids_in_this_section[i];
      auto origin_id = id + abs_sections[section_idx];
      auto& offsets = id_to_offset[origin_id];
      for (auto& offset : offsets) {
        // should support GPU tensor
        memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
                     cpu_place, out_var_data + i * grad_row_numel,
                     sizeof(T) * grad_row_numel);
      }
    }
  }
}

inline void prefetch(
        const std::string& table_name,
        const std::string& id_name,
        const std::string& out_name,
        const std::vector<std::string>& epmap,
        const std::vector<int64_t>& height_section,
        const framework::Scope& scope,
        const platform::Place& place) const {

  auto local_scope = scope.NewScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(place);

  distributed::RPCClient* rpc_client =
          distributed::RPCClient::GetInstance<RPCCLIENT_T>(
                  Attr<int>("trainer_id"));

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < epmap.size(); ++i) {
    in_var_names.push_back(id_name + "@" + epmap[i]);
    out_var_names.push_back(out_name + "@" + epmap[i]);
  }

  auto splited_ids = SplitIds(id_name, height_section, local_scope);
  SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_section, splited_ids, local_scope);

  // create output var in local scope
  for (auto& name : out_var_names) {
    local_scope.Var(name)->GetMutable<framework::LoDTensor>();
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < ins.size(); i++) {
    if (NeedSend(local_scope, ins[i])) {
      VLOG(30) << "sending " << ins[i] << " to " << epmap[i] << " to get "
      << outs[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(epmap[i], ctx, local_scope,
                                                  in_var_names[i], out_var_names[i]));
    } else {
      VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
  }

  MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names, height_section, plited_ids, scope)

  scope.DeleteScope(local_scope);
}

}  // namespace distributed
}  // namespace operators
}  // namespace paddle