elementwise_broadcast.cu.h 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/pten/core/dense_tensor.h"
C
Chen Weihang 已提交
18
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise_common.cu.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

namespace pten {

struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
                               const paddle::framework::DDim &dims,
                               int axis) {
    const int N = ins.size();
    dim_size = dims.size();
    out_dims = paddle::framework::vectorize<int64_t>(dims);
    in_dims.resize(N);
    for (int j = 0; j < N; ++j) {
      in_dims[j] = paddle::framework::vectorize<int64_t>(ins[j]->dims());
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
134
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
135 136 137 138 139 140 141 142 143 144
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
145
          equal &= in_dims[j][i] == out[i];
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
    const T *__restrict__ src,
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
    bool need_broadcast) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int VecSize,
          int Rank,
          bool IsBoundary = false>
199
__device__ void ElementwiseBroadcastKernelImpl(
200 201 202 203 204 205 206
    const paddle::framework::Array<const InT *__restrict__, Arity> &ins,
    OutT *out,
    const paddle::framework::Array<bool, Arity> &use_broadcast,
    uint32_t numel,
    const paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        &configs,
    int num,
207
    int block_offset,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    Functor func) {
  InT args[Arity][VecSize];
  OutT result[VecSize];

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }

  const bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
                             OutT,
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);
  kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
      out + block_offset, result, num);
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int VecSize,
          int Rank>
242
__global__ void ElementwiseBroadcastKernel(
243 244 245 246 247 248
    paddle::framework::Array<const InT *__restrict__, Arity> ins,
    OutT *out,
    paddle::framework::Array<bool, Arity> use_broadcast,
    uint32_t numel,
    paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        configs,
249
    int main_offset,
250 251
    int tail_tid,
    Functor func) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
#ifdef PADDLE_WITH_XPU2
  for (; block_offset < main_offset; block_offset += stride) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
                                   VecSize,
                                   Rank,
                                   false>(ins,
                                          out,
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  }
  if (block_offset < numel) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
                                   VecSize,
                                   Rank,
                                   true>(
        ins, out, use_broadcast, numel, configs, tail_tid, block_offset, func);
280
  }
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

#else
  if (block_offset < main_offset) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
                                   VecSize,
                                   Rank,
                                   false>(ins,
                                          out,
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  } else {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
                                   VecSize,
                                   Rank,
                                   true>(
        ins, out, use_broadcast, numel, configs, tail_tid, block_offset, func);
  }
#endif
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int VecSize,
          int Rank>
void LaunchKernel(const paddle::platform::CUDADeviceContext &ctx,
                  const std::vector<const DenseTensor *> &ins,
                  DenseTensor *out,
                  Functor func,
                  DimensionsTransform merge_dims) {
  int numel = out->numel();
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;

326
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();
  OutT *out_data = out->mutable_data<OutT>();

  paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  paddle::framework::Array<bool, Arity> use_broadcast;
  paddle::framework::Array<const InT *__restrict__, Arity> ins_data;

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
    ins_data[i] = ins[i]->data<InT>();
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
#ifdef PADDLE_WITH_XPU2
  threads = 128;
  blocks = 8;
  main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  tail_tid = numel % (VecSize * threads);
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
                             VecSize,
                             Rank><<<blocks, threads, stream>>>(ins_data,
                                                                out_data,
                                                                use_broadcast,
                                                                numel,
                                                                configs,
                                                                main_offset,
                                                                tail_tid,
                                                                func);
#else
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
                             VecSize,
                             Rank><<<blocks, threads, 0, stream>>>(
      ins_data,
      out_data,
      use_broadcast,
      numel,
      configs,
      main_offset,
      tail_tid,
      func);
#endif
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

template <typename InT, typename OutT, typename Functor, int Arity, int VecSize>
void LaunchBroadcastKernelForDifferentVecSize(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
    DenseTensor *out,
    int axis,
    Functor func) {
  const auto merge_dims = DimensionsTransform(ins, out->dims(), axis);

#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                   \
  case rank: {                                              \
    LaunchKernel<InT, OutT, Functor, Arity, VecSize, rank>( \
        ctx, ins, out, func, merge_dims);                   \
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.\n",
          merge_dims.dim_size,
          paddle::framework::DDim::kMaxRank));
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

template <ElementwiseType ET, typename InT, typename OutT, typename Functor>
void LaunchBroadcastElementwiseCudaKernel(
    const paddle::platform::CUDADeviceContext &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(kArity,
                    2,
                    paddle::platform::errors::InvalidArgument(
                        "Currently only broadcast of binary is supported and "
                        "verified, but received %d.",
                        kArity));

  int in_vec_size = 4;
  DenseTensor *out = (*outs)[0];
  for (auto *in : ins) {
    auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
    in_vec_size = in->dims() == out->dims() ? std::min(temp_size, in_vec_size)
                                            : in_vec_size;
  }
  int out_vec_size =
      paddle::platform::GetVectorizedSize<OutT>(out->data<OutT>());
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
      LaunchBroadcastKernelForDifferentVecSize<InT, OutT, Functor, kArity, 4>(
          ctx, ins, out, axis, func);
      break;
    }
    case 2: {
      LaunchBroadcastKernelForDifferentVecSize<InT, OutT, Functor, kArity, 2>(
          ctx, ins, out, axis, func);
      break;
    }
    case 1: {
      LaunchBroadcastKernelForDifferentVecSize<InT, OutT, Functor, kArity, 1>(
          ctx, ins, out, axis, func);
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

}  // namespace pten