expand_op.h 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14 15 16

#pragma once

17 18
#include <vector>

Y
yangyaming 已提交
19 20 21 22 23 24
#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
yangyaming 已提交
28

29 30
#define MAX_RANK_SUPPORTED 6

Y
yangyaming 已提交
31 32 33 34 35 36
#define EXPAND_TEMPLATE(z, n, data) \
  case n + 1: {                     \
    Expand<n + 1>(context);         \
    break;                          \
  }
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
37 38 39
#define COND(n)                                               \
  BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
                         BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
Y
yangyaming 已提交
40 41 42 43 44
#define EXPAND_GRAD_CASE(n)                                        \
  case n: {                                                        \
    ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                         \
  }
Y
yangyaming 已提交
45
#define EXPAND_GRAD_TEMPLATE(z, n, data) \
Y
yangyaming 已提交
46
  BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
Y
yangyaming 已提交
47
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~)
Y
yangyaming 已提交
48 49 50

namespace paddle {
namespace operators {
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
inline std::vector<int> get_expand_times(
    const framework::ExecutionContext& ctx) {
  auto list_expand_times_tensor =
      ctx.MultiInput<framework::Tensor>("expand_times_tensor");
  if (list_expand_times_tensor.size() > 0) {
    // get tensor from
    std::vector<int> vec_epxand_times;
    for (size_t i = 0; i < list_expand_times_tensor.size(); ++i) {
      auto tensor = list_expand_times_tensor[i];
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_epxand_times.push_back(*temp.data<int32_t>());
      } else {
        vec_epxand_times.push_back(*tensor->data<int32_t>());
      }
    }

    return vec_epxand_times;
  } else {
    return ctx.Attr<std::vector<int>>("expand_times");
  }
}
Y
yangyaming 已提交
74

Y
yangyaming 已提交
75
using Tensor = framework::Tensor;
Y
yangyaming 已提交
76 77 78 79 80 81 82
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

Q
QI JUN 已提交
83
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
84
class ExpandKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
85 86
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
87
    auto rank = context.Input<Tensor>("X")->dims().size();
Y
yangyaming 已提交
88
    switch (rank) {
89
      REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED)
Y
yangyaming 已提交
90
      default:
Y
yangyaming 已提交
91 92
        PADDLE_ENFORCE(false,
                       "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
93
    }
Y
yangyaming 已提交
94 95 96 97 98
  }

 protected:
  template <int Rank>
  void Expand(const framework::ExecutionContext& context) const {
Y
yangyaming 已提交
99
    auto* in0 = context.Input<Tensor>("X");
100 101 102

    auto in_dims = in0->dims();
    auto expand_times = get_expand_times(context);
Y
yangyaming 已提交
103
    auto* out0 = context.Output<Tensor>("Out");
Y
yangyaming 已提交
104 105 106 107
    Eigen::DSizes<int, Rank> bcast_dims;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      bcast_dims[i] = expand_times[i];
    }
108 109 110 111 112 113 114

    framework::DDim out_dims(in_dims);
    for (size_t i = 0; i < expand_times.size(); ++i) {
      out_dims[i] *= expand_times[i];
    }

    out0->Resize(out_dims);
Y
yangyaming 已提交
115 116 117
    auto x = EigenTensor<T, Rank>::From(*in0);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0);
Q
QI JUN 已提交
118 119
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
Y
yangyaming 已提交
120 121 122 123
    y.device(place) = x.broadcast(bcast_dims);
  }
};

Q
QI JUN 已提交
124
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
125
class ExpandGradKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
126 127
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
128
    auto* in0 = context.Input<Tensor>("X");
129 130
    // auto& expand_times = context.Attr<std::vector<int>>("expand_times");
    auto expand_times = get_expand_times(context);
Y
yangyaming 已提交
131
    auto x_dims = in0->dims();
132 133 134 135 136 137
    // 1. reshape_dims_vec is the broadcast parameter. For each dimension i,
    //    if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two
    //    dimensions [expand_times[i], x_dims[i]].
    // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
    //    each dimension expanded, the gradients should be summed to original
    //    size.
Y
yangyaming 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      if (expand_times[i] == 1) {
        reshape_dims_vec.push_back(x_dims[i]);
      } else {
        if (x_dims[i] == 1) {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
        } else {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
          reshape_dims_vec.push_back(x_dims[i]);
        }
      }
    }

155 156
    int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
               reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
Y
yangyaming 已提交
157 158
    // no need reduce, just copy
    if (reduce_dims_vec.size() == 0) {
Y
yangyaming 已提交
159 160
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
Y
yangyaming 已提交
161
      out0->mutable_data<T>(context.GetPlace());
Y
Yi Wang 已提交
162 163
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
Y
yangyaming 已提交
164 165 166 167
    } else {
      switch (dims) {
        REP_EXPAND_GRAD_TEMPLATE(72)
        default:
Y
yangyaming 已提交
168 169
          PADDLE_ENFORCE(
              false, "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
170
      }
Y
yangyaming 已提交
171
    }
Y
yangyaming 已提交
172 173 174 175 176 177 178
  }

 protected:
  template <int Dims>
  void ExpandBackward(const framework::ExecutionContext& context,
                      const std::vector<int>& reshape_dims_vec,
                      const std::vector<int>& reduce_dims_vec) const {
179 180
    size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
    size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
Y
yangyaming 已提交
181
    PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
Y
yangyaming 已提交
182
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
183 184
                      "reshape dimensions.");
    PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
Y
yangyaming 已提交
185
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
186
                      "reduce dimensions.");
Y
yangyaming 已提交
187 188 189
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    auto x = EigenVector<T>::Flatten(*(context.Input<Tensor>("X")));
Y
yangyaming 已提交
190 191
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
192
    Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
Y
yangyaming 已提交
193 194 195
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
196
    Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
Y
yangyaming 已提交
197 198 199 200
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
Q
QI JUN 已提交
201 202
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
Y
yangyaming 已提交
203 204 205 206
        out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions());
  }
};

Y
yangyaming 已提交
207 208
}  // namespace operators
}  // namespace paddle