test_pass_builder.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
import unittest
import os
import sys
import math


def simple_fc_net():
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = img
    for _ in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


class TestPassBuilder(unittest.TestCase):
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

            train_exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                loss_name=loss.name,
                main_program=main,
                build_strategy=build_strategy)

            test_exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                main_program=test_program,
                share_vars_from=train_exe,
                build_strategy=build_strategy)

            for i in range(5):
                test_loss, = test_exe.run([loss.name], feed=feed_dict)

                train_loss, = train_exe.run([loss.name], feed=feed_dict)

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

                self.assertTrue(
                    np.allclose(
                        train_loss, test_loss, atol=1e-8),
                    "Train loss: " + str(train_loss) + "\n Test loss:" +
                    str(test_loss))

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
97
        pass_builder = build_strategy._create_passes_from_strategy()
X
fix  
Xin Pan 已提交
98 99
        origin_len = len(pass_builder.all_passes())

100
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
101 102 103 104 105 106
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

        pass_builder.insert_pass(
            len(pass_builder.all_passes()), "graph_viz_pass")
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

107
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
108 109
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
        viz_pass.set_str("graph_viz_path", "/tmp/test_viz_pass")
110 111 112 113

        self.check_network_convergence(
            use_cuda=core.is_compiled_with_cuda(),
            build_strategy=build_strategy)
X
fix  
Xin Pan 已提交
114 115 116 117
        try:
            os.stat("/tmp/test_viz_pass")
        except os.error:
            self.assertFalse(True)
118 119 120 121


if __name__ == '__main__':
    unittest.main()