cudnn_desc.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
W
wanghuancoder 已提交
25

26 27
#include "paddle/fluid/platform/cudnn_helper.h"

W
wanghuancoder 已提交
28 29 30 31 32 33
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

34 35 36 37 38
namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
Q
qingqing01 已提交
39
inline cudnnDataType_t ToCudnnDataType(const T& t) {
40 41 42 43
  auto type = framework::ToDataType(t);
  return ToCudnnDataType(type);
}

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

67
template <>
Q
qingqing01 已提交
68 69
inline cudnnDataType_t ToCudnnDataType(
    const framework::proto::VarType::Type& t) {
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  cudnnDataType_t type = CUDNN_DATA_FLOAT;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = CUDNN_DATA_HALF;
      break;
    case framework::proto::VarType::FP32:
      type = CUDNN_DATA_FLOAT;
      break;
    case framework::proto::VarType::FP64:
      type = CUDNN_DATA_DOUBLE;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  using T = cudnnActivationStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
93 94
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyActivationDescriptor(t));
95 96 97 98 99 100
        t = nullptr;
      }
    }
  };
  ActivationDescriptor() {
    T* raw_ptr;
101 102
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&raw_ptr));
103 104 105 106
    desc_.reset(raw_ptr);
  }
  template <typename T>
  void set(cudnnActivationMode_t mode, const T& coef) {
107
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
  }

  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class TensorDescriptor {
 public:
  using T = cudnnTensorStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
124
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(t));
125 126 127 128 129 130
        t = nullptr;
      }
    }
  };
  TensorDescriptor() {
    T* raw_ptr;
131
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
132 133 134 135 136
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
  void set(const Tensor& tensor, const int groups = 1) {
137
    auto dims = framework::vectorize<int>(tensor.dims());
138 139 140 141 142 143 144 145 146
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
147
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
148 149 150 151
        desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
        dims_with_group.data(), strides.data()));
  }

152 153 154 155 156 157 158 159
  void set(const Tensor& tensor, const cudnnTensorFormat_t format) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
160
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
161 162 163 164
        desc_.get(), format, ToCudnnDataType(tensor.type()),
        transformed_dims.size(), transformed_dims.data()));
  }

165 166 167 168
 private:
  std::unique_ptr<T, Deleter> desc_;
};

Q
qingqing01 已提交
169 170 171 172 173 174
class FilterDescriptor {
 public:
  using T = cudnnFilterStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
175
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(t));
Q
qingqing01 已提交
176 177 178 179 180 181
        t = nullptr;
      }
    }
  };
  FilterDescriptor() {
    T* raw_ptr;
182
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
Q
qingqing01 已提交
183 184 185 186 187 188 189
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(const Tensor& tensor, const cudnnTensorFormat_t format,
           const int groups = 1) {
190
    auto dims = framework::vectorize<int>(tensor.dims());
191 192 193 194 195 196
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
Q
qingqing01 已提交
197
    if (groups > 1) {
198
      transformed_dims[1] = transformed_dims[1] / groups;
Q
qingqing01 已提交
199
    }
200
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
201 202
        desc_.get(), ToCudnnDataType(tensor.type()), format,
        transformed_dims.size(), transformed_dims.data()));
Q
qingqing01 已提交
203 204 205 206 207 208 209 210 211 212 213 214
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class ConvolutionDescriptor {
 public:
  using T = cudnnConvolutionStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
215 216
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyConvolutionDescriptor(t));
Q
qingqing01 已提交
217 218 219 220 221 222
        t = nullptr;
      }
    }
  };
  ConvolutionDescriptor() {
    T* raw_ptr;
223 224
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
Q
qingqing01 已提交
225 226 227 228 229 230 231 232 233 234 235
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(cudnnDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           const int groups = 1) {
    cudnnDataType_t compute_type =
        (dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
    T* desc = desc_.get();
236
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
Q
qingqing01 已提交
237 238 239
        desc, pads.size(), pads.data(), strides.data(), dilations.data(),
        CUDNN_CROSS_CORRELATION, compute_type));
#if CUDNN_VERSION_MIN(7, 0, 1)
240
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
241
        platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
242
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
243
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
244
        desc, CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
245
    if (dtype == CUDNN_DATA_HALF) {
246 247 248
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(desc,
                                                         CUDNN_TENSOR_OP_MATH));
Q
qingqing01 已提交
249
    }
250
#endif
Q
qingqing01 已提交
251 252 253 254 255 256 257
#endif
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

258 259
}  // namespace platform
}  // namespace paddle