sum_mkldnn_op.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

40 41 42 43 44 45
namespace paddle {
namespace operators {

using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
T
tangwei12 已提交
46
using mkldnn::reorder;
47 48
using mkldnn::stream;
using mkldnn::sum;
T
tangwei12 已提交
49 50 51
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
52 53 54 55 56 57
using platform::to_void_cast;

template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
58 59 60
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Sum must use CPUPlace"));
61 62 63 64
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    auto in_vars = ctx.MultiInputVar("X");
    auto out_var = ctx.OutputVar("Out");
65 66 67

    PADDLE_ENFORCE_NE(in_vars.empty(), true, platform::errors::InvalidArgument(
                                                 "Input variable is empty."));
68 69
    bool in_place = out_var == in_vars[0];

70 71
    LoDTensor* output = ctx.Output<LoDTensor>("Out");
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
72

73 74 75 76 77 78
    auto dst_tz = framework::vectorize<int64_t>(output->dims());
    auto src_tz = dst_tz;
    MKLDNNMemoryFormat output_format{MKLDNNMemoryFormat::undef};
    std::vector<float> scales;
    std::vector<memory::desc> srcs_md;
    std::vector<mkldnn::memory> srcs_mem;
79

80 81
    auto& input0 = in_vars[0]->Get<LoDTensor>();
    in_place = (input0.numel() > 0) && (input0.data<T>() == output_data);
82

83
    MKLDNNMemoryFormat input_format = input0.format();
84

85 86 87 88
    for (size_t i = 0; i < in_vars.size(); i++) {
      auto& input_it = in_vars[i]->Get<LoDTensor>();
      if (input_it.numel() == 0) {
        continue;
A
Adam 已提交
89 90
      }

91
      const T* input_data = input_it.data<T>();
A
Adam 已提交
92

93 94 95 96 97 98
      auto src_md = memory::desc(src_tz, memory::data_type::f32, input_format);
      auto src_mem = memory(src_md, mkldnn_engine, to_void_cast(input_data));
      srcs_md.push_back(src_md);
      srcs_mem.push_back(src_mem);
      scales.push_back(1.0);
    }
99

100 101 102 103
    auto dst_md =
        memory::desc(dst_tz, memory::data_type::f32, MKLDNNMemoryFormat::any);

    auto sum_pd = sum::primitive_desc(dst_md, scales, srcs_md, mkldnn_engine);
104

105 106 107 108 109
    std::shared_ptr<memory> dst_mem;
    if (in_place) {
      dst_mem.reset(new memory(sum_pd.dst_desc(), mkldnn_engine));
    } else {
      dst_mem.reset(new memory(sum_pd.dst_desc(), mkldnn_engine, output_data));
110
    }
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    auto sum_prim = mkldnn::sum(sum_pd);
    output_format = platform::GetMKLDNNFormat(sum_pd.dst_desc());

    std::shared_ptr<mkldnn::reorder> reorder_p;
    std::shared_ptr<memory> target_mem;
    if (in_place) {
      output_format = input_format;
      target_mem.reset(
          new memory({{src_tz}, memory::data_type::f32, output_format},
                     mkldnn_engine, output_data));
      reorder_p = std::make_shared<reorder>(*dst_mem, *target_mem);
    }

    mkldnn::stream astream(mkldnn_engine);
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < srcs_mem.size(); ++i) {
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, srcs_mem.at(i)});
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

    sum_prim.execute(astream, args);
    astream.wait();

    if (in_place) {
      reorder_p->execute(astream, *dst_mem, *target_mem);
      astream.wait();
    }

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
142 143 144 145 146 147 148 149
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(sum, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::SumMKLDNNOpKernel<float>);