elementwise_min_op.h 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
Wu Yi 已提交
17 18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
W
wanghuancoder 已提交
19

F
fengjiayi 已提交
20 21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace operators {

template <typename T>
struct MinFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
32 33 34
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
35 36 37

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
38 39
    ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MinFunctor<T>(), z);
F
fengjiayi 已提交
40 41 42 43
  }
};

template <typename T>
C
chengduoZH 已提交
44 45 46
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x < y);
F
fengjiayi 已提交
47 48 49 50
  }
};

template <typename T>
C
chengduoZH 已提交
51 52 53
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x >= y);
F
fengjiayi 已提交
54 55 56 57
  }
};

template <typename DeviceContext, typename T>
58
class ElementwiseMinGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
59 60
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
61
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
62 63 64 65 66 67 68
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
69
    auto* out = dout;  // Fake out, not used
C
chengduoZH 已提交
70
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
71 72
    ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
F
fengjiayi 已提交
73 74 75 76
  }
};
}  // namespace operators
}  // namespace paddle