pool2d_op.cc 8.8 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20 21 22 23 24 25 26
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

31 32 33 34
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
58 59 60 61 62
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
63 64
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
65
    VLOG(4)
N
nhzlx 已提交
66 67
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
68 69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 input, but got %d input.",
                          op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 Output, but got %d output.",
                          op_desc.Output("Out").size()));

N
nhzlx 已提交
77 78 79 80
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

81 82
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
83
    std::string pool_type =
84
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
85
    std::vector<int> ksize =
86
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
87
    std::vector<int> strides =
88
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
89
    std::vector<int> paddings =
90 91
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
92 93
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
94
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
95

N
nhzlx 已提交
96
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
97 98
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
99
    if (pool_type == "max") {
N
nhzlx 已提交
100
      nv_pool_type = nvinfer1::PoolingType::kMAX;
101
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
102
    } else if (pool_type == "avg") {
N
nhzlx 已提交
103
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
104
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
105
    } else {
106 107 108
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong pool op type, the trt do not support the %s pool type.",
          pool_type));
N
nhzlx 已提交
109 110
    }

N
nhzlx 已提交
111 112 113 114 115 116
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

117 118 119
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
120
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
121 122 123 124
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (engine_->with_dynamic_shape()) {
      if (!adaptive && pool_type == "max" && !global_pooling && !ceil_mode) {
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
        layer = pool_layer;
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
        layer = engine_->AddPluginV2(&input1, 1, plugin);
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
150 151 152 153 154 155
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
      auto *layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
156 157 158
      PADDLE_ENFORCE_NOT_NULL(
          layer, platform::errors::Fatal(
                     "trt pool layer in converter could not be created."));
N
nhzlx 已提交
159 160 161 162
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
N
nhzlx 已提交
163
      if (test_mode) {
N
nhzlx 已提交
164
        engine_->DeclareOutput(output_name);
165
      }
N
nhzlx 已提交
166 167
      return;
    }
168

169
    if (!adaptive && pool_type == "max") {
N
nhzlx 已提交
170 171 172 173
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
174 175
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
176 177 178 179 180 181 182 183
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
184 185 186
            pad_layer,
            platform::errors::Fatal(
                "pad layer in poolOp converter could not be created."));
N
nhzlx 已提交
187 188 189 190 191
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
192 193 194
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
195 196 197 198 199 200 201 202 203 204
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
205
      }
206 207 208 209
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
210 211 212 213
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
214
      layer = pool_layer;
215
    }
N
nhzlx 已提交
216 217

    auto output_name = op_desc.Output("Out")[0];
218
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
219 220 221 222 223 224 225 226 227
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);