graph_send_recv_kernel.cu 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gpu/graph_send_recv_funcs.h"
#include "paddle/phi/kernels/graph_send_recv_kernel.h"

#include <thrust/device_vector.h>
#include <thrust/fill.h>
#include <algorithm>
#include <vector>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename Context, typename T, typename IndexT>
void GraphSendRecvOpCUDAKernelLaunchHelper(const Context& ctx,
                                           const DenseTensor& x,
                                           const DenseTensor& src_index,
                                           const DenseTensor& dst_index,
                                           const std::string& pool_type,
                                           DenseTensor* out,
                                           DenseTensor* dst_count = nullptr) {
  const int& index_size = src_index.dims()[0];
  ctx.template Alloc<T>(out);
  T* p_output = out->data<T>();
  const auto& src_dims = x.dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) {
    memset_size *= src_dims[i];
  }
  const size_t& memset_bytes = memset_size * sizeof(T);
  if (pool_type == "SUM" || pool_type == "MEAN") {
#ifdef PADDLE_WITH_HIP
    hipMemset(p_output, 0, memset_bytes);
#else
    cudaMemset(p_output, 0, memset_bytes);
#endif
  } else if (pool_type == "MAX") {
    thrust::device_ptr<T> p_output_ptr(p_output);
    thrust::fill(thrust::device,
                 p_output_ptr,
                 p_output_ptr + memset_size,
                 std::numeric_limits<T>::min());
  } else if (pool_type == "MIN") {
    thrust::device_ptr<T> p_output_ptr(p_output);
    thrust::fill(thrust::device,
                 p_output_ptr,
                 p_output_ptr + memset_size,
                 std::numeric_limits<T>::max());
  }

  if (index_size == 0) return;

  int64_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) {
    slice_size *= src_dims[i];
  }
  const T* p_src = x.data<T>();
  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index.data<IndexT>();

#ifdef PADDLE_WITH_HIP
  int block = 256;
#else
  int block = 1024;
#endif
  int64_t n = slice_size * index_size;
  int64_t max_grid_dimx = ctx.GetCUDAMaxGridDimSize()[0];
  int64_t grid_tmp = (n + block - 1) / block;
  int64_t grid = grid_tmp < max_grid_dimx ? grid_tmp : max_grid_dimx;
  int64_t input_size = src_dims[0];
  if (pool_type == "SUM") {
    GraphSendRecvSumCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<
        T,
        IndexT,
        GraphSendRecvSumCUDAFunctor<T,
                                    IndexT>><<<grid, block, 0, ctx.stream()>>>(
        p_src, s_index, d_index, p_output, index_size, slice_size, functor);
  } else if (pool_type == "MAX") {
    GraphSendRecvMaxCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<
        T,
        IndexT,
        GraphSendRecvMaxCUDAFunctor<T,
                                    IndexT>><<<grid, block, 0, ctx.stream()>>>(
        p_src, s_index, d_index, p_output, index_size, slice_size, functor);

    int64_t grid_max_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_max =
        grid_max_tmp < max_grid_dimx ? grid_max_tmp : max_grid_dimx;
    InputResetMaxCUDAKernel<T><<<grid_max, block, 0, ctx.stream()>>>(
        p_output, input_size, slice_size);
  } else if (pool_type == "MIN") {
    GraphSendRecvMinCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<
        T,
        IndexT,
        GraphSendRecvMinCUDAFunctor<T,
                                    IndexT>><<<grid, block, 0, ctx.stream()>>>(
        p_src, s_index, d_index, p_output, index_size, slice_size, functor);

    int64_t grid_min_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_min =
        grid_min_tmp < max_grid_dimx ? grid_min_tmp : max_grid_dimx;
    InputResetMinCUDAKernel<T><<<grid_min, block, 0, ctx.stream()>>>(
        p_output, input_size, slice_size);
  } else if (pool_type == "MEAN") {
    GraphSendRecvSumCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<
        T,
        IndexT,
        GraphSendRecvSumCUDAFunctor<T,
                                    IndexT>><<<grid, block, 0, ctx.stream()>>>(
        p_src, s_index, d_index, p_output, index_size, slice_size, functor);

    ctx.template Alloc<int32_t>(dst_count);
    int32_t* p_dst_count = dst_count->data<int32_t>();

#ifdef PADDLE_WITH_HIP
    hipMemset(p_dst_count, 0, input_size * sizeof(int));
#else
    cudaMemset(p_dst_count, 0, input_size * sizeof(int));
#endif

    int64_t grid_count = (index_size + block - 1) / block;
    ComputeCountCUDAKernel<T, IndexT><<<grid_count, block, 0, ctx.stream()>>>(
        p_dst_count, d_index, index_size);

    int64_t grid_mean_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_mean =
        grid_mean_tmp < max_grid_dimx ? grid_mean_tmp : max_grid_dimx;
    ManipulateMeanCUDAKernel<T><<<grid_mean, block, 0, ctx.stream()>>>(
        p_output, p_dst_count, input_size, slice_size);
  }
}

template <typename T, typename Context>
void GraphSendRecvKernel(const Context& ctx,
                         const DenseTensor& x,
                         const DenseTensor& src_index,
                         const DenseTensor& dst_index,
                         const std::string& pool_type,
                         DenseTensor* out,
                         DenseTensor* dst_count) {
  auto index_type = src_index.dtype();
  if (index_type == phi::DataType::INT32) {
    GraphSendRecvOpCUDAKernelLaunchHelper<Context, T, int32_t>(
        ctx, x, src_index, dst_index, pool_type, out, dst_count);
  } else if (index_type == phi::DataType::INT64) {
    GraphSendRecvOpCUDAKernelLaunchHelper<Context, T, int64_t>(
        ctx, x, src_index, dst_index, pool_type, out, dst_count);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(graph_send_recv,
                   GPU,
                   ALL_LAYOUT,
                   phi::GraphSendRecvKernel,
                   float,
                   double,
                   int,
                   int64_t) {}