graph_send_recv_grad_kernel.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/graph_send_recv_grad_kernel.h"
#include "paddle/phi/kernels/cpu/graph_send_recv_funcs.h"

#include <algorithm>
#include <vector>

#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename IndexT, typename Functor>
void GraphSendRecvCpuGradLoop(const int& input_size,
                              const int& index_size,
                              const IndexT* s_index,
                              const IndexT* d_index,
                              const DenseTensor& src,
                              DenseTensor* dst,
                              const std::string& pool_type,
                              const int* dst_count = nullptr,
                              const DenseTensor* input = nullptr,
                              const DenseTensor* output = nullptr) {
  if (pool_type == "SUM") {
    Functor functor;
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      ElementwiseInnerOperation<T, IndexT, Functor>(
          src, dst, src_idx, dst_idx, false, functor);
    }
  } else if (pool_type == "MEAN") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      auto src_slice = src.Slice(src_idx, src_idx + 1);
      auto dst_slice = dst->Slice(dst_idx, dst_idx + 1);
      auto eigen_src = phi::EigenVector<T>::Flatten(src_slice);
      auto eigen_dst = phi::EigenVector<T>::Flatten(dst_slice);
      eigen_dst += (eigen_src / static_cast<T>(dst_count[src_idx]));
    }
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& forward_src_idx = d_index[i];
      const IndexT& forward_dst_idx = s_index[i];
      auto input_slice = input->Slice(forward_src_idx, forward_src_idx + 1);
      auto output_slice = output->Slice(forward_dst_idx, forward_dst_idx + 1);
      auto eigen_input = phi::EigenVector<T>::Flatten(input_slice);
      auto eigen_output = phi::EigenVector<T>::Flatten(output_slice);

      auto src_slice = src.Slice(forward_dst_idx, forward_dst_idx + 1);
      auto dst_slice = dst->Slice(forward_src_idx, forward_src_idx + 1);
      auto eigen_src = phi::EigenVector<T>::Flatten(src_slice);
      auto eigen_dst = phi::EigenVector<T>::Flatten(dst_slice);
      eigen_dst += eigen_src * (eigen_output == eigen_input);
    }
  }
}

template <typename Context, typename T, typename IndexT>
void GraphSendRecvGradOpKernelLaunchHelper(
    const Context& ctx,
    const DenseTensor& out_grad,
    const DenseTensor& src_index,
    const DenseTensor& dst_index,
    const std::string& pool_type,
    DenseTensor* x_grad,
    const DenseTensor* dst_count = nullptr,
    const DenseTensor* x = nullptr,
    const DenseTensor* out = nullptr) {
  const int& index_size = dst_index.dims()[0];

  ctx.template Alloc<T>(x_grad);
  T* p_output = x_grad->data<T>();
  const auto& src_dims = out_grad.dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) memset_size *= src_dims[i];
  const size_t& memset_bytes = memset_size * sizeof(T);
  memset(p_output, 0, memset_bytes);

  if (index_size == 0) return;

  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index.data<IndexT>();

  if (pool_type == "SUM") {
    GraphSendRecvCpuGradLoop<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, d_index, s_index, out_grad, x_grad, pool_type);
  } else if (pool_type == "MEAN") {
    const int* s_count = dst_count->data<int>();
    // Functor not used here.
    GraphSendRecvCpuGradLoop<T, IndexT, GraphSendRecvSumFunctor<T>>(src_dims[0],
                                                                    index_size,
                                                                    d_index,
                                                                    s_index,
                                                                    out_grad,
                                                                    x_grad,
                                                                    pool_type,
                                                                    s_count);
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    // Functor not used here.
    GraphSendRecvCpuGradLoop<T, IndexT, GraphSendRecvMinFunctor<T>>(src_dims[0],
                                                                    index_size,
                                                                    d_index,
                                                                    s_index,
                                                                    out_grad,
                                                                    x_grad,
                                                                    pool_type,
                                                                    nullptr,
                                                                    x,
                                                                    out);
  }
}

template <typename T, typename Context>
void GraphSendRecvGradKernel(const Context& ctx,
                             const DenseTensor& out_grad,
                             paddle::optional<const DenseTensor&> x,
                             paddle::optional<const DenseTensor&> out,
                             const DenseTensor& src_index,
                             const DenseTensor& dst_index,
                             paddle::optional<const DenseTensor&> dst_count,
                             const std::string& pool_type,
                             DenseTensor* x_grad) {
  auto index_type = src_index.dtype();
  if (index_type == phi::DataType::INT32) {
    GraphSendRecvGradOpKernelLaunchHelper<Context, T, int32_t>(
        ctx,
        out_grad,
        src_index,
        dst_index,
        pool_type,
        x_grad,
        dst_count.get_ptr(),
        x.get_ptr(),
        out.get_ptr());
  } else if (index_type == phi::DataType::INT64) {
    GraphSendRecvGradOpKernelLaunchHelper<Context, T, int64_t>(
        ctx,
        out_grad,
        src_index,
        dst_index,
        pool_type,
        x_grad,
        dst_count.get_ptr(),
        x.get_ptr(),
        out.get_ptr());
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(graph_send_recv_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::GraphSendRecvGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}