mobilenet.py 1.9 KB
Newer Older
F
flame 已提交
1
#!/usr/bin/env python3.7
2 3

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
4
#
5 6 7
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
8
#
9
#     http://www.apache.org/licenses/LICENSE-2.0
10
#
11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
flame 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
# pylint: skip-file

import functools
import numpy as np
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import AnalysisPredictor
from paddle.fluid.core import create_paddle_predictor


def main():
    config = set_config()
    predictor = create_paddle_predictor(config)

    data, result = parse_data()

    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    shape = (1, 3, 300, 300)
    input_data = data[:-4].astype(np.float32).reshape(shape)
    input_tensor.copy_from_cpu(input_data)

    predictor.zero_copy_run()

    output_names = predictor.get_output_names()
    output_tensor = predictor.get_output_tensor(output_names[0])
    output_data = output_tensor.copy_to_cpu()


def set_config():
    config = AnalysisConfig("")
    config.set_model("model/__model__", "model/__params__")
    config.switch_use_feed_fetch_ops(False)
    config.switch_specify_input_names(True)
    config.enable_profile()

    return config


def parse_data():
    """ parse input and output data """
    with open('data/data.txt', 'r') as fr:
        data = np.array([float(_) for _ in fr.read().split()])

    with open('data/result.txt', 'r') as fr:
        result = np.array([float(_) for _ in fr.read().split()])

    return (data, result)


if __name__ == "__main__":
    main()