elementwise_mul_op.cu 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/phi/backends/gpu/gpu_context.h"
17 18

namespace ops = paddle::operators;
W
Wu Yi 已提交
19
namespace plat = paddle::platform;
20

21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
29 30 31 32 33
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
34 35
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
36
    if (x_var->IsType<phi::SelectedRows>()) {
Y
YuanRisheng 已提交
37 38 39 40 41
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
42 43
      paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary,
                                                     T, T>(
Y
YuanRisheng 已提交
44 45 46 47 48 49
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
50

Y
YuanRisheng 已提交
51 52 53 54
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
55 56
      phi::MultiplyRawKernel<T>(static_cast<const phi::GPUContext&>(cuda_ctx),
                                *pt_x.get(), *pt_y.get(), axis, pt_z.get());
Y
YuanRisheng 已提交
57 58 59 60 61 62
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
63 64 65 66 67
  }
};

template <typename DeviceContext, typename T>
typename std::enable_if<
68 69 70 71 72 73 74 75 76 77 78 79
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();

  if (dx != nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, y, x};
80
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
81 82 83 84 85 86 87 88 89 90
        dev_ctx, place, axis, ins, dout, dx, dy, MulGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, y};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dx, MulGradFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, x};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dy, MulGradFunctor<T>());
  }
91
}
92 93 94 95

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
96
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
97 98 99 100
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
101
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
102
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
103 104
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
105
REGISTER_OP_CUDA_KERNEL(
106
    elementwise_mul_grad,
W
Wu Yi 已提交
107 108 109 110
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
111
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
112
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
113 114 115 116
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
117 118 119 120 121
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
122
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
123
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
124
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
125
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
126
                                        plat::complex<float>>,
127
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
128
                                        plat::complex<double>>);
129 130 131 132 133 134 135 136 137 138 139 140
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);