manipulation.cu 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/pten/api/ext/dispatch.h"
C
Chen Weihang 已提交
16
#include "paddle/pten/infermeta/unary.h"
17 18
#include "paddle/pten/kernels/gpu/manipulation.h"
#include "paddle/pten/kernels/gpu/utils.h"
C
Chen Weihang 已提交
19 20
#include "paddle/pten/kernels/hybird/cuda/cast_kernel_impl.h"
#include "paddle/pten/kernels/hybird/general/manipulation.h"
21 22 23 24

namespace pten {

template <typename T>
25
void Flatten(const GPUContext& dev_ctx,
26 27 28 29
             const DenseTensor& x,
             int start_axis,
             int stop_axis,
             DenseTensor* out) {
30
  auto out_dims = out->dims();
31
  pten::Copy(dev_ctx, x, false, out);
32
  out->Resize(out_dims);
33 34 35 36 37 38
}

// TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate
// Output Tensor,
// is there a more flexible way to deal with this case?
template <typename T>
39
void FlattenWithXShape(const GPUContext& dev_ctx,
40 41 42 43 44 45
                       const DenseTensor& x,
                       int start_axis,
                       int stop_axis,
                       DenseTensor* out,
                       DenseTensor* xshape) {
  Flatten<T>(dev_ctx, x, start_axis, stop_axis, out);
46 47 48
  general::SetXShape(x, xshape);
}

49
void Reshape(const GPUContext& dev_ctx,
50 51 52 53
             const DenseTensor& x,
             const ScalarArray& shape,
             DenseTensor* out) {
  auto out_meta = InferMetaFromVecValue(x.meta(), shape.GetData());
54
  if (x.data() == out->data() && x.numel() == out->numel()) {
55 56 57 58 59 60
    out->Resize(out_meta.dims);
    return;
  }
  pten::Copy(dev_ctx, x, false, out);
  out->Resize(out_meta.dims);
  out->ResetLoD(x.lod());
61 62
}

63
void ReshapeWithXShape(const GPUContext& dev_ctx,
64 65 66 67
                       const DenseTensor& x,
                       const ScalarArray& shape,
                       DenseTensor* xshape,
                       DenseTensor* out) {
68
  general::SetXShape(x, xshape);
69
  Reshape(dev_ctx, x, shape, out);
70 71 72
}

template <typename T>
73
void Cast(const GPUContext& dev_ctx,
74 75 76 77 78
          const DenseTensor& x,
          DataType out_dtype,
          DataType in_dtype,
          DenseTensor* out) {
  PD_VISIT_ALL_TYPES(out_dtype, "CastKernelImpl", ([&] {
79
                       detail::CastCUDAKernelImpl<T, data_t>(dev_ctx, x, out);
80
                     }));
81 82 83 84 85
}

}  // namespace pten

using float16 = paddle::platform::float16;
86 87

PT_REGISTER_KERNEL(flatten,
88
                   GPU,
89
                   ALL_LAYOUT,
90 91 92 93 94 95 96 97
                   pten::Flatten,
                   float,
                   float16,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}
98
PT_REGISTER_KERNEL(flatten_with_xshape,
99
                   GPU,
100
                   ALL_LAYOUT,
101 102 103 104 105 106 107
                   pten::FlattenWithXShape,
                   float,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}
108 109

#define PTEN_REGISTER_CAST_CUDA_BASE_TYPE(op_name, ...) \
110
  PT_REGISTER_KERNEL(cast,                              \
111
                     GPU,                               \
112
                     ALL_LAYOUT,                        \
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                     pten::Cast,                        \
                     float,                             \
                     double,                            \
                     int,                               \
                     int64_t,                           \
                     int16_t,                           \
                     bool,                              \
                     uint8_t,                           \
                     paddle::platform::float16,         \
                     paddle::platform::complex<float>,  \
                     paddle::platform::complex<double>, \
                     ##__VA_ARGS__) {                   \
    kernel->OutputAt(0).SetDataType(                    \
        paddle::experimental::DataType::UNDEFINED);     \
  }

#if !defined(PADDLE_WITH_HIP)
PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast, paddle::platform::bfloat16)
#else
PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast)
#endif
134

135
PT_REGISTER_NO_TEMPLATE_KERNEL(reshape, GPU, ANY, pten::Reshape, ALL_DTYPE) {}
136
PT_REGISTER_NO_TEMPLATE_KERNEL(
137
    reshape_with_xshape, GPU, ANY, pten::ReshapeWithXShape, ALL_DTYPE) {}