provider.py 2.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import io, os
D
dangqingqing 已提交
16 17 18 19 20
import random
import numpy as np
import six.moves.cPickle as pickle
from paddle.trainer.PyDataProvider2 import *

21

D
dangqingqing 已提交
22 23 24
def remove_unk(x, n_words):
    return [[1 if w >= n_words else w for w in sen] for sen in x]

25

D
dangqingqing 已提交
26 27 28 29 30
# ==============================================================
#  tensorflow uses fixed length, but PaddlePaddle can process
#  variable-length. Padding is used in benchmark in order to
#  compare with other platform. 
# ==============================================================
31 32 33 34 35 36
def pad_sequences(sequences,
                  maxlen=None,
                  dtype='int32',
                  padding='post',
                  truncating='post',
                  value=0.):
D
dangqingqing 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    lengths = [len(s) for s in sequences]

    nb_samples = len(sequences)
    if maxlen is None:
        maxlen = np.max(lengths)

    x = (np.ones((nb_samples, maxlen)) * value).astype(dtype)
    for idx, s in enumerate(sequences):
        if len(s) == 0:
            continue  # empty list was found
        if truncating == 'pre':
            trunc = s[-maxlen:]
        elif truncating == 'post':
            trunc = s[:maxlen]
        else:
            raise ValueError("Truncating type '%s' not understood" % padding)

        if padding == 'post':
            x[idx, :len(trunc)] = trunc
        elif padding == 'pre':
            x[idx, -len(trunc):] = trunc
        else:
            raise ValueError("Padding type '%s' not understood" % padding)
    return x


def initHook(settings, vocab_size, pad_seq, maxlen, **kwargs):
    settings.vocab_size = vocab_size
    settings.pad_seq = pad_seq
66
    settings.maxlen = maxlen
D
dangqingqing 已提交
67
    settings.input_types = [
68 69 70
        integer_value_sequence(vocab_size), integer_value(2)
    ]

D
dangqingqing 已提交
71

72 73
@provider(
    init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
D
dangqingqing 已提交
74 75 76 77 78 79 80 81
def process(settings, file):
    f = open(file, 'rb')
    train_set = pickle.load(f)
    f.close()
    x, y = train_set

    # remove unk, namely remove the words out of dictionary
    x = remove_unk(x, settings.vocab_size)
82
    if settings.pad_seq:
D
dangqingqing 已提交
83 84 85
        x = pad_sequences(x, maxlen=settings.maxlen, value=0.)

    for i in range(len(y)):
86
        yield map(int, x[i]), int(y[i])