stacked_dynamic_lstm.py 4.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import cPickle
import os
import random
import time

import numpy
26 27
import paddle
import paddle.dataset.imdb as imdb
D
dzhwinter 已提交
28
import paddle.fluid as fluid
29
import paddle.batch as batch
D
dzhwinter 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import paddle.fluid.profiler as profiler

word_dict = imdb.word_dict()


def crop_sentence(reader, crop_size):
    unk_value = word_dict['<unk>']

    def __impl__():
        for item in reader():
            if len([x for x in item[0] if x != unk_value]) < crop_size:
                yield item

    return __impl__


46 47 48 49
def get_model(args):
    lstm_size = 512
    emb_dim = 512
    crop_size = 1500
D
dzhwinter 已提交
50 51 52 53

    data = fluid.layers.data(
        name="words", shape=[1], lod_level=1, dtype='int64')
    sentence = fluid.layers.embedding(
54
        input=data, size=[len(word_dict), emb_dim])
D
dzhwinter 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(
                ipt,
                hidden,
                size, ):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            gate = fluid.layers.sums(input=[gate0, gate1])
            return gate

        forget_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        input_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        output_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        cell_gate = fluid.layers.tanh(
            x=gate_common(word, prev_hidden, lstm_size))

        cell = fluid.layers.sums(input=[
            fluid.layers.elementwise_mul(
                x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
                    x=input_gate, y=cell_gate)
        ])

        hidden = fluid.layers.elementwise_mul(
            x=output_gate, y=fluid.layers.tanh(x=cell))

        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_pool(rnn(), 'last')
    logit = fluid.layers.fc(input=last, size=2, act='softmax')
    loss = fluid.layers.cross_entropy(
        input=logit,
        label=fluid.layers.data(
            name='label', shape=[1], dtype='int64'))
    loss = fluid.layers.mean(x=loss)

    # add acc
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
                shape=[1], dtype='int64'), total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    adam = fluid.optimizer.Adam()

D
dzhwinter 已提交
115 116
    train_reader = batch(
        paddle.reader.shuffle(
117 118 119 120 121
            crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
        batch_size=args.batch_size)
    test_reader = batch(
        paddle.reader.shuffle(
            crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),
D
dzhwinter 已提交
122 123
        batch_size=args.batch_size)

124
    return loss, inference_program, adam, train_reader, test_reader, batch_acc
D
dzhwinter 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = numpy.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res