test_parameters.py 4.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
import unittest
import sys

try:
    import py_paddle

    del py_paddle
except ImportError:
    print >> sys.stderr, "It seems swig of Paddle is not installed, this " \
                         "unittest will not be run."
    sys.exit(0)

import paddle.v2.parameters as parameters
X
xuwei06 已提交
28 29 30
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
from paddle.v2.attr import ParamAttr
31 32 33 34 35 36
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
import random
import cStringIO
import numpy


37
def __rand_param_config__(name, psize=None):
38 39 40
    conf = ParameterConfig()
    conf.name = name
    size = 1
41 42 43 44 45 46 47
    if psize is None:
        for i in xrange(2):
            dim = random.randint(1, 1000)
            conf.dims.append(dim)
            size *= dim
    else:
        size = psize
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    conf.size = size
    assert conf.IsInitialized()
    return conf


class TestParameters(unittest.TestCase):
    def test_serialization(self):
        params = parameters.Parameters()
        params.__append_config__(__rand_param_config__("param_0"))
        params.__append_config__(__rand_param_config__("param_1"))

        for name in params.names():
            param = params.get(name)
            param[:] = numpy.random.uniform(
                -1.0, 1.0, size=params.get_shape(name))
            params.set(name, param)

        tmp_file = cStringIO.StringIO()
        params.to_tar(tmp_file)
        tmp_file.seek(0)
        params_dup = parameters.Parameters.from_tar(tmp_file)

        self.assertEqual(params_dup.names(), params.names())

        for name in params.names():
            self.assertEqual(params.get_shape(name), params_dup.get_shape(name))
            p0 = params.get(name)
            p1 = params_dup.get(name)
            self.assertTrue(numpy.isclose(p0, p1).all())

X
xuwei06 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    def test_initializer(self):
        def initializer(name):
            assert name == "fc.w"
            mat = numpy.ones((3, 2), dtype=numpy.float32)
            mat[1, 1] = 2
            return mat

        x = layer.data(name="x", type=data_type.dense_vector(3))
        y = layer.fc(x,
                     size=2,
                     bias_attr=False,
                     param_attr=ParamAttr(
                         name="fc.w", initializer=initializer))
        params = parameters.create(y)
        val = params["fc.w"]
        assert val.shape == (3, 2)
        expected = numpy.array([[1, 1], [1, 2], [1, 1]], numpy.float32)
        assert numpy.logical_and.reduce(numpy.reshape(val == expected, 6))

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def test_init_from_tar(self):
        def get_param(names, size):
            p = parameters.Parameters()
            for k, v in zip(names, size):
                p.__append_config__(__rand_param_config__(k, v))
            for name in p.names():
                param = p.get(name)
                param[:] = numpy.random.uniform(
                    -1.0, 1.0, size=p.get_shape(name))
                p.set(name, param)
            return p

        def get_parames():
            name1 = ['param_0', 'param_1']
            size1 = [128, 256]
            p1 = get_param(name1, size1)
            file1 = cStringIO.StringIO()
            p1.to_tar(file1)
            file1.seek(0)

            name2 = ['param_0', 'param_1', 'param_2']
            size2 = [128, 256, 288]
            p2 = get_param(name2, size2)
            file2 = cStringIO.StringIO()
            p2.to_tar(file2)
            file2.seek(0)
            return p1, file1, p2, file2

        p1, file1, p2, file2 = get_parames()
        p2.init_from_tar(file1)
        for name in p1.names():
            self.assertEqual(p1.get_shape(name), p2.get_shape(name))
            v1 = p1.get(name)
            v2 = p2.get(name)
            self.assertTrue(numpy.isclose(v1, v2).all())

        p1, file1, p2, file2 = get_parames()
        p1.init_from_tar(file2)
        for name in p1.names():
            self.assertEqual(p1.get_shape(name), p2.get_shape(name))
            v1 = p1.get(name)
            v2 = p2.get(name)
            self.assertTrue(numpy.isclose(v1, v2).all())

141 142 143

if __name__ == '__main__':
    unittest.main()