smallnet_mnist_cifar.py 10.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dangqingqing 已提交
15 16 17 18 19 20 21 22 23 24
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

25 26
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

parameters = []

conv_counter = 1
pool_counter = 1
affine_counter = 1

44

D
dangqingqing 已提交
45 46 47 48 49 50
def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005, act=True):
    global conv_counter
    global parameters
    name = 'conv' + str(conv_counter)
    conv_counter += 1
    with tf.name_scope(name) as scope:
51 52 53 54
        kernel = tf.Variable(
            tf.truncated_normal(
                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
55 56 57 58 59 60

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
61
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
62
        else:
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        bias = tf.reshape(
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())
D
dangqingqing 已提交
79 80

        conv1 = tf.nn.relu(bias, name=scope) if act else bias
81

D
dangqingqing 已提交
82 83 84 85
        parameters += [kernel, biases]

        return conv1

86

D
dangqingqing 已提交
87 88 89 90 91 92
def _affine(inpOp, nIn, nOut, wd=None, act=True):
    global affine_counter
    global parameters
    name = 'affine' + str(affine_counter)
    affine_counter += 1
    with tf.name_scope(name) as scope:
93 94 95 96
        kernel = tf.Variable(
            tf.truncated_normal(
                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
97 98 99 100 101

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

102 103 104 105 106
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
D
dangqingqing 已提交
107

108 109 110
        affine1 = tf.nn.relu_layer(
            inpOp, kernel, biases,
            name=name) if act else tf.matmul(inpOp, kernel) + biases
D
dangqingqing 已提交
111 112 113 114 115

        parameters += [kernel, biases]

        return affine1

116

D
dangqingqing 已提交
117 118 119 120 121 122
def _mpool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
123 124
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
125
    else:
126 127 128 129 130 131 132 133 134
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)
D
dangqingqing 已提交
135 136 137 138 139 140 141 142


def _apool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
143 144
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
145
    else:
146 147 148 149 150 151 152 153 154 155
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
156 157

def _norm(name, l_input, lsize=4):
158 159 160
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
161
                     alpha=0.001 / 9.0,
162 163 164
                     beta=0.75,
                     name=name)

D
dangqingqing 已提交
165 166 167 168 169 170

def loss(logits, labels):
    batch_size = tf.size(labels)
    labels = tf.expand_dims(labels, 1)
    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
    concated = tf.concat(1, [indices, labels])
171 172 173 174
    onehot_labels = tf.sparse_to_dense(concated,
                                       tf.pack([batch_size, 10]), 1.0, 0.0)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, onehot_labels, name='xentropy')
D
dangqingqing 已提交
175 176 177
    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    return loss

178

D
dangqingqing 已提交
179 180 181 182 183 184 185 186 187
def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

188

D
dangqingqing 已提交
189
def inference(images):
190 191 192 193 194 195
    conv1 = _conv(images, 3, 32, 5, 5, 1, 1, 'SAME')
    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
    conv2 = _conv(pool1, 32, 32, 5, 5, 1, 1, 'SAME')
    pool2 = _apool(conv2, 3, 3, 2, 2, 'SAME')
    conv3 = _conv(pool2, 32, 64, 5, 5, 1, 1, 'SAME')
    pool3 = _apool(conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
196 197 198 199
    resh1 = tf.reshape(pool3, [-1, 64 * 4 * 4])
    affn1 = _affine(resh1, 64 * 4 * 4, 64)
    affn2 = _affine(affn1, 64, 10, act=False)

200 201 202 203 204 205 206
    print('conv1:', get_incoming_shape(conv1))
    print('pool1:', get_incoming_shape(pool1))
    print('conv2:', get_incoming_shape(conv2))
    print('pool2:', get_incoming_shape(pool2))
    print('conv3:', get_incoming_shape(conv3))
    print('pool3:', get_incoming_shape(pool3))

D
dangqingqing 已提交
207 208 209 210
    return affn2


def time_tensorflow_run(session, target, info_string):
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
233 234

def run_benchmark():
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    global parameters
    with tf.Graph().as_default():
        # Generate some dummy images.
        image_size = 32
        # Note that our padding definition is slightly different the cuda-convnet.
        # In order to force the model to start with the same activations sizes,
        # we add 3 to the image_size and employ VALID padding above.
        if FLAGS.data_format == 'NCHW':
            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
        else:
            image_shape = [FLAGS.batch_size, image_size, image_size, 3]

        images = tf.get_variable(
            'image',
            image_shape,
            initializer=tf.truncated_normal_initializer(
                stddev=0.1, dtype=tf.float32),
            dtype=tf.float32,
            trainable=False)

        labels = tf.get_variable(
            'label', [FLAGS.batch_size],
            initializer=tf.constant_initializer(1),
            dtype=tf.int32,
            trainable=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        last_layer = inference(images)

        objective = loss(last_layer, labels)

        # Compute gradients.
        opt = tf.train.MomentumOptimizer(0.001, 0.9)
        grads = opt.compute_gradients(objective)
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(
                0.0, dtype=tf.float32),
            trainable=False,
            dtype=tf.float32)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables(
        ))

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        run_forward = True
        run_forward_backward = True
        if FLAGS.forward_only and FLAGS.forward_backward_only:
            raise ValueError("Cannot specify --forward_only and "
                             "--forward_backward_only at the same time.")
        if FLAGS.forward_only:
            run_forward_backward = False
        elif FLAGS.forward_backward_only:
            run_forward = False

        if run_forward:
            # Run the forward benchmark.
            time_tensorflow_run(sess, last_layer, "Forward")

        if run_forward_backward:
            with tf.control_dependencies(
                [apply_gradient_op, variables_averages_op]):
                train_op = tf.no_op(name='train')
            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
D
dangqingqing 已提交
311 312 313


def main(_):
314
    run_benchmark()
D
dangqingqing 已提交
315 316 317


if __name__ == '__main__':
318
    tf.app.run()