recurrent_op_test.cc 12.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include <glog/logging.h>
#include <gtest/gtest.h>

#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
21
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {

class RecurrentOpTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepNet();
    CreateRNNOp();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // create input, and init content
    LOG(INFO) << "create global variable x";
    for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
Y
Yu Yang 已提交
40
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
41 42 43 44 45 46
      DDim dims = make_ddim(std::vector<int>{
          10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }
    // create output alias just for test
    for (auto inlink : std::vector<std::string>{"h@alias"}) {
Y
Yu Yang 已提交
47
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
48 49 50 51 52 53
      DDim dims =
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }

    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
54
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
55 56 57
    w->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());

58
    for (auto boot : std::vector<std::string>{"h_boot"}) {
Y
Yan Chunwei 已提交
59
      LOG(INFO) << "create global variable " << boot;
Y
Yu Yang 已提交
60
      Variable* h_boot = scope_.NewVar(boot);
Y
Yan Chunwei 已提交
61 62 63 64 65 66
      h_boot->GetMutable<Tensor>()->mutable_data<float>(
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
          platform::CPUPlace());
    }

    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
67
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
68 69

    LOG(INFO) << "create variable h";
Y
Yu Yang 已提交
70
    scope_.NewVar("h");
Y
Yan Chunwei 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }

  void CreateRNNOp() {
    OpDesc op_desc;

    op_desc.set_type("recurrent_op");
    // inlinks 0
    op_desc.add_inputs("x");
    op_desc.add_inputs("x0");
    op_desc.add_inputs("x1");
    // boot_memories 3
    op_desc.add_inputs("h_boot");
    // step net 5
    op_desc.add_inputs("step_net");
    // outlinks 6
    op_desc.add_outputs("h");
    // step scopes 7
    op_desc.add_outputs("step_scopes");

    auto _input_format = std::vector<int>{
        0,  // in_link
        3,  // memories
93
        4   // step_net
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    };
    auto input_format = op_desc.add_attrs();
    input_format->set_name("input_format");
    input_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : _input_format) {
      input_format->add_ints(i);
    }

    auto output_format = op_desc.add_attrs();
    output_format->set_name("output_format");
    output_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : std::vector<int>{0, 1, 2}) {
      output_format->add_ints(i);
    }

    auto inlink_alias = op_desc.add_attrs();
    inlink_alias->set_name("inlink_alias");
    inlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto outlink_alias = op_desc.add_attrs();
    outlink_alias->set_name("outlink_alias");
    outlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto pre_memories = op_desc.add_attrs();
    pre_memories->set_name("pre_memories");
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);

    auto memories = op_desc.add_attrs();
    memories->set_name("memories");
    memories->set_type(paddle::framework::AttrType::STRINGS);

    // create inlink_alias
    for (const auto& item :
         std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
      inlink_alias->add_strings(item);
    }
    // pre memories
131
    for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
Y
Yan Chunwei 已提交
132 133 134
      pre_memories->add_strings(item);
    }
    // memories
135
    for (const auto& item : std::vector<std::string>{"rnn/h"}) {
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
      memories->add_strings(item);
    }
    // output alias
    for (const auto& item : std::vector<std::string>{"h@alias"}) {
      outlink_alias->add_strings(item);
    }

    rnn_op_ = OpRegistry::CreateOp(op_desc);

    LOG(INFO) << "rnn_op finish init";
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
150
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
151 152 153 154 155
    auto net = var->GetMutable<NetOp>();
    net->AddOp(
        OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));

    net->AddOp(
156
        OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
Y
Yan Chunwei 已提交
157 158 159 160
    net->CompleteAddOp();
  }

  // father scope
Y
Yu Yang 已提交
161
  Scope scope_;
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  std::shared_ptr<OperatorBase> rnn_op_;
};

TEST_F(RecurrentOpTest, Run) {
  platform::CPUDeviceContext ctx;
  rnn_op_->InferShape(scope_);
  rnn_op_->Run(scope_, ctx);
}

class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepScopes();
    CreateStepNet();
    CreateRNNGradientAlgorithm();

    // segment inputs
    SegmentInputs();
    // link forward memories
    LinkeMemories();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // inputs: x
    LOG(INFO) << "create global variable x";
Y
Yu Yang 已提交
190
    Variable* x = scope_.NewVar("x");
Y
Yan Chunwei 已提交
191 192 193 194 195
    DDim dims =
        make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
    x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    // inputs: h_boot
    LOG(INFO) << "create global variable h_boot";
Y
Yu Yang 已提交
196
    Variable* h_boot = scope_.NewVar("h_boot");
Y
Yan Chunwei 已提交
197 198 199 200
    h_boot->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
    // inputs: w
    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
201
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
202 203 204 205
    w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
                                                 platform::CPUPlace());
    // inputs: h_grad
    LOG(INFO) << "create variable h_grad";
Y
Yu Yang 已提交
206
    Variable* dh = scope_.NewVar("h_grad");
Y
Yan Chunwei 已提交
207 208 209 210
    dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
                                                  platform::CPUPlace());
    // inputs: step_scopes
    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
211
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
212 213
    // inputs: step_net
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
214
    scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
215 216
    // outputs: w_grad
    LOG(INFO) << "create global variable w_grad";
Y
Yu Yang 已提交
217
    scope_.NewVar("rnn/w_grad");
Y
Yan Chunwei 已提交
218 219
    // outputs: x_grad
    LOG(INFO) << "create global variable x_grad";
Y
Yu Yang 已提交
220
    scope_.NewVar("x_grad");
Y
Yan Chunwei 已提交
221 222
    // outputs: h_boot_grad
    LOG(INFO) << "create global variable h_boot_grad";
Y
Yu Yang 已提交
223
    scope_.NewVar("h_boot_grad");
Y
Yan Chunwei 已提交
224 225 226
  }

  void CreateStepScopes() {
Y
Yu Yang 已提交
227 228
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
229
    for (int i = 0; i < 10; ++i) {
Y
Yu Yang 已提交
230 231 232 233 234
      auto& scope = scope_.NewScope();
      auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
      pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
      auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
      tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
235 236

      // for unit test of ConcatOutputs
Y
Yu Yang 已提交
237 238
      auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
      xg->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
239

Y
Yu Yang 已提交
240
      step_scopes->emplace_back(&scope);
Y
Yan Chunwei 已提交
241 242 243
    }

    // last time step
244
    auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
Y
Yu Yang 已提交
245
    g->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  }

  void CreateRNNGradientAlgorithm() {
    std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
    arg->step_net = "step_net";
    arg->step_scopes = "step_scopes";
    rnn::Link inlink;
    inlink.external = "h_grad";
    inlink.internal = "rnn/h_grad";
    arg->inlinks = std::vector<rnn::Link>{inlink};

    rnn::Link outlink;
    outlink.external = "x_grad";
    outlink.internal = "rnn/x_grad";
    arg->outlinks = std::vector<rnn::Link>{outlink};

    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre_grad";
    mem_attr.var = "rnn/h_grad";
    mem_attr.boot_var = "h_boot_grad";
    arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};

    rnn_grad_algo_.Init(std::move(arg));
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
273
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    auto net = var->GetMutable<NetOp>();
    net->AddOp(OpRegistry::CreateOp("mul",
                                    {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
                                    {"rnn/h_pre_grad", "rnn/w_grad"},
                                    {}));

    net->AddOp(OpRegistry::CreateOp(
        "add_two", {"rnn/h_grad"}, {"rnn/x_grad", "rnn/s_grad"}, {}));
    net->CompleteAddOp();
  }

  void SegmentInputs() {
    LOG(INFO) << "segment inputs";
    std::vector<std::string> inlinks = {"x"};
    std::vector<std::string> inlinks_alias = {"rnn/x"};

    rnn::Link inlink;
    inlink.external = "x";
    inlink.internal = "rnn/x";
Y
Yu Yang 已提交
293 294
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
D
dangqingqing 已提交
295 296 297 298
    rnn::SegmentInputs(*step_scopes,
                       std::vector<rnn::Link>{inlink},
                       10,
                       true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
299 300 301 302 303 304 305 306 307 308
  }

  void LinkeMemories() {
    LOG(INFO) << "link memories";
    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre";
    mem_attr.var = "rnn/h";
    mem_attr.boot_var = "boot_h";
    std::vector<rnn::MemoryAttr> memories;
    memories.push_back(mem_attr);
Y
Yu Yang 已提交
309 310
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
311
    for (int i = 1; i < 10; ++i) {
D
dangqingqing 已提交
312 313
      rnn::LinkMemories(
          *step_scopes, memories, i, -1, true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
314 315 316
    }
  }

Y
Yu Yang 已提交
317
  Scope scope_;
Y
Yan Chunwei 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  RecurrentGradientAlgorithm rnn_grad_algo_;
};

// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//   platform::CPUDeviceContext ctx;
//   rnn_grad_algo_.Run(scope_, ctx);
// }

}  // namespace operators
}  // namespace paddle

TEST(RecurrentOp, LinkMemories) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators;

  // create and init step scopes
D
dangqingqing 已提交
335
  size_t len = 10;
Y
Yu Yang 已提交
336
  std::vector<Scope*> step_scopes;
D
dangqingqing 已提交
337
  for (size_t i = 0; i < len; ++i) {
Y
Yu Yang 已提交
338
    auto scope = new Scope();
339 340
    scope->NewVar("pre_h");
    auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
Y
Yu Yang 已提交
341
    float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
D
dangqingqing 已提交
342
    for (size_t j = 0; j < 15 * 20; ++j) {
D
dangqingqing 已提交
343
      data[j] = rand() * (1. / (double)RAND_MAX);
Y
Yan Chunwei 已提交
344 345 346 347 348 349 350 351 352 353 354 355
    }
    step_scopes.push_back(scope);
  }

  // create MemoryAttr
  rnn::MemoryAttr mem_attr;
  mem_attr.pre_var = "pre_h";
  mem_attr.var = "h";
  mem_attr.boot_var = "boot_h";
  std::vector<rnn::MemoryAttr> memories;
  memories.push_back(mem_attr);

D
dangqingqing 已提交
356
  for (size_t i = 1; i < len; ++i) {
D
dangqingqing 已提交
357
    rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
358 359
  }
  // check
D
dangqingqing 已提交
360
  for (size_t i = 0; i < len - 1; ++i) {
Y
Yan Chunwei 已提交
361
    const float* a =
362
        step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
Y
Yan Chunwei 已提交
363
    const float* b = step_scopes[i + 1]
364
                         ->FindVar("pre_h")
Y
Yan Chunwei 已提交
365 366
                         ->GetMutable<Tensor>()
                         ->data<float>();
367 368
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
369 370 371 372
    }
  }

  for (int i = len - 2; i >= 0; --i) {
D
dangqingqing 已提交
373
    rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
374 375 376
  }
  // check
  for (int i = len - 2; i >= 0; --i) {
377 378 379 380
    const float* a =
        step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
    const float* b =
        step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
381 382
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
383 384
    }
  }
Y
Yu Yang 已提交
385 386 387 388

  for (auto s : step_scopes) {
    delete s;
  }
Y
Yan Chunwei 已提交
389 390 391 392
}

USE_OP(add_two);
USE_OP(mul);