sparse_utils_kernel.cu 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/execution_policy.h>
#include <thrust/remove.h>

18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
20 21
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
22
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
23
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
24

25
namespace phi {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
  auto nums_meta =
102 103 104 105 106 107
      phi::DenseTensorMeta(DataType::INT32, {1}, phi::DataLayout::NCHW);
  DenseTensor nums = phi::Empty(dev_ctx, std::move(nums_meta));
  auto x_dims_meta = phi::DenseTensorMeta(DataType::INT64,
                                          {static_cast<int64_t>(x_dims.size())},
                                          phi::DataLayout::NCHW);
  DenseTensor d_x_dims = phi::Empty(dev_ctx, std::move(x_dims_meta));
108 109 110 111 112 113 114 115 116 117 118 119

  const auto place = dev_ctx.GetPlace();

  // 1. get numbers of non zero elements, and get the index of non zero elements
  int* nums_ptr = nums.mutable_data<int>(place);
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream()));
#endif
120
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
121 122

  auto temp_indexs_meta =
123 124
      phi::DenseTensorMeta(DataType::INT32, {rows}, phi::DataLayout::NCHW);
  DenseTensor temp_indexs = phi::Empty(dev_ctx, std::move(temp_indexs_meta));
125
  int* temp_indexs_ptr = temp_indexs.mutable_data<int>(place);
126 127 128 129
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(&non_zero_num,
                                            nums_ptr,
                                            sizeof(int),
                                            hipMemcpyDeviceToHost,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(&non_zero_num,
                                             nums_ptr,
                                             sizeof(int),
                                             cudaMemcpyDeviceToHost,
                                             dev_ctx.stream()));
#endif

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemcpyAsync(d_x_dims.mutable_data<int64_t>(place),
                     x_dims.Get(),
                     x_dims.size() * sizeof(x_dims[0]),
                     hipMemcpyHostToDevice,
                     dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemcpyAsync(d_x_dims.mutable_data<int64_t>(place),
                      x_dims.Get(),
                      x_dims.size() * sizeof(x_dims[0]),
                      cudaMemcpyHostToDevice,
                      dev_ctx.stream()));
#endif

  dev_ctx.Wait();  // wait the copy

174 175
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
176 177 178 179
  DenseTensorMeta indices_meta(DataType::INT64,
                               {sparse_dim, static_cast<int64_t>(non_zero_num)},
                               DataLayout::NCHW);
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
180 181
  phi::DenseTensor indices(
      phi::make_intrusive<paddle::experimental::SharedStorage>(
182 183
          dev_ctx.GetPlace()),
      std::move(indices_meta));
184 185
  phi::DenseTensor values(
      phi::make_intrusive<paddle::experimental::SharedStorage>(
186 187 188 189 190 191
          dev_ctx.GetPlace()),
      std::move(values_meta));
  int64_t* indices_data = indices.mutable_data<int64_t>(place);
  T* sparse_data = values.mutable_data<T>(place);

  // 3. calc indices by indexs and get values by indexs
192 193 194 195 196 197 198 199 200 201 202 203
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
204 205 206
  out->SetMember(indices, values, x_dims, true);
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
__global__ void GetBatchSizes(const int64_t* crows,
                              const int rows,
                              const int batchs,
                              int* batch_sizes) {
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

__global__ void ConvertCsrCrowsToCooRows(const int64_t* crows_ptr,
                                         const int* crows_offsets,
                                         int64_t* rows_ptr,
                                         int64_t* batch_ptr,
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
  const int64_t* csr_crows_data = csr_crows.data<int64_t>();
  const int64_t* csr_cols_data = csr_cols.data<int64_t>();
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta indices_meta(
      DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
260 261
  DenseTensorMeta values_meta(
      x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
262
  DenseTensorMeta offsets_meta(DataType::INT32, {batchs}, DataLayout::NCHW);
263 264 265
  DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
  DenseTensor offsets = phi::Empty(dev_ctx, std::move(offsets_meta));
266 267 268 269 270 271 272 273 274
  int64_t* coo_indices = indices.mutable_data<int64_t>(place);
  int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  int64_t* coo_rows_data =
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
  int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  int* offsets_ptr = batchs == 1 ? nullptr : offsets.mutable_data<int>(place);
  T* coo_values_data = values.mutable_data<T>(place);

  if (batchs > 1) {
275 276
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
    GetBatchSizes<<<config.block_per_grid.x, config.thread_per_block.x>>>(
277 278 279 280 281 282 283 284 285 286 287 288
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

289 290 291 292
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
  ConvertCsrCrowsToCooRows<<<config.block_per_grid,
                             config.thread_per_block.x>>>(
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
      csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_cols_data,
                                            csr_cols_data,
                                            sizeof(int64_t) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_values_data,
                                            csr_values_data,
                                            sizeof(T) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_cols_data,
                                             csr_cols_data,
                                             sizeof(int64_t) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_values_data,
                                             csr_values_data,
                                             sizeof(T) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
#endif

  out->SetMember(indices, values, x_dims, true);
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
__global__ void GetBatchsOffset(const int64_t* batchs_ptr,
                                const int non_zero_num,
                                int64_t* batchs_offset) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
      batchs_offset[batchs_ptr[i]] = i + 1;
    }
  }
}

__global__ void ConvertCooRowsToCsrCrows(
    const int64_t* batchs_offset,  // can be null if batchs = 1
    const int64_t* coo_rows_data,
    int64_t* csr_crows_data,
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
  if (batch_non_zero_num == 0) return;
  int batch_start = 0;
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
  auto* coo_rows_ptr = coo_rows_data + batch_start;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
      for (int j = 0; j <= coo_rows_ptr[0]; j++) {
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
      for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
      for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
}

template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
377
                    phi::errors::InvalidArgument(
378 379 380 381 382 383 384 385 386 387 388
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta crows_meta(
      DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
  DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW);
389 390
  DenseTensorMeta values_meta(
      x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
391 392
  phi::DenseTensor non_zero_crows(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
393
      std::move(crows_meta));
394 395
  phi::DenseTensor non_zero_cols(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
396
      std::move(cols_meta));
397 398
  phi::DenseTensor non_zero_elements(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
      std::move(values_meta));
  int64_t* csr_crows_data = non_zero_crows.mutable_data<int64_t>(place);
  int64_t* csr_cols_data = non_zero_cols.mutable_data<int64_t>(place);
  T* csr_values_data = non_zero_elements.mutable_data<T>(place);

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
  const int64_t* batchs_ptr = coo_indices.data<int64_t>();
  const int64_t* coo_rows_data =
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
  const int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  const T* coo_values_data = coo_values.data<T>();

  if (!x.coalesced()) {
    // TODO(zhangkahuo): call coalesced() to distinct and sort the indices
  }

416
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
417 418
  if (batchs > 1) {
    DenseTensorMeta batchs_meta(DataType::INT64, {batchs}, DataLayout::NCHW);
419 420
    phi::DenseTensor batchs_offset(
        phi::make_intrusive<paddle::experimental::SharedStorage>(place),
421 422
        std::move(batchs_meta));
    int64_t* batchs_offset_ptr = batchs_offset.mutable_data<int64_t>(place);
423 424 425 426
    GetBatchsOffset<<<config.block_per_grid.x,
                      config.thread_per_block.x,
                      0,
                      dev_ctx.stream()>>>(
427
        batchs_ptr, non_zero_num, batchs_offset_ptr);
428 429 430 431 432
    config.block_per_grid.y = batchs;
    ConvertCooRowsToCsrCrows<<<config.block_per_grid,
                               config.thread_per_block.x,
                               0,
                               dev_ctx.stream()>>>(
433 434
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
435 436 437 438
    ConvertCooRowsToCsrCrows<<<config.block_per_grid.x,
                               config.thread_per_block.x,
                               0,
                               dev_ctx.stream()>>>(
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_cols_data,
                                            coo_cols_data,
                                            sizeof(int64_t) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_values_data,
                                            coo_values_data,
                                            sizeof(T) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_cols_data,
                                             coo_cols_data,
                                             sizeof(int64_t) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_values_data,
                                             coo_values_data,
                                             sizeof(T) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
#endif
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
template <typename ValueT, typename IndicesT>
__global__ void KernelSparseCooToDense(const IndicesT* indices,
                                       const IndicesT* sparse_offsets,
                                       const ValueT* data,
                                       ValueT* dense_data,
                                       const IndicesT non_zero_num,
                                       const int64_t base_offset,
                                       const int64_t sparse_dim) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
  T* out_data = out->mutable_data<T>(place);
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

518 519
  auto sparse_offset_meta = phi::DenseTensorMeta(
      DataType::INT64, {sparse_dim}, phi::DataLayout::NCHW);
520
  DenseTensor d_sparse_offsets = Empty(dev_ctx, std::move(sparse_offset_meta));
Z
zhangkaihuo 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemcpyAsync(d_sparse_offsets.mutable_data<int64_t>(place),
                     sparse_offsets.data(),
                     sparse_dim * sizeof(int64_t),
                     hipMemcpyHostToDevice,
                     dev_ctx.stream()));

  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemcpyAsync(d_sparse_offsets.mutable_data<int64_t>(place),
                      sparse_offsets.data(),
                      sparse_dim * sizeof(int64_t),
                      cudaMemcpyHostToDevice,
                      dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream()));
#endif
542 543
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
544

545 546 547 548
  KernelSparseCooToDense<T, int64_t><<<config.block_per_grid.x,
                                       config.thread_per_block.x,
                                       0,
                                       dev_ctx.stream()>>>(
Z
zhangkaihuo 已提交
549 550 551 552 553 554 555 556 557
      indices.data<int64_t>(),
      d_sparse_offsets.data<int64_t>(),
      x_data,
      out_data,
      non_zero_num,
      base_offset,
      sparse_dim);
}

558
}  // namespace sparse
559
}  // namespace phi
560

561
PD_REGISTER_KERNEL(dense_to_sparse_coo,
562 563
                   GPU,
                   ALL_LAYOUT,
564
                   phi::sparse::DenseToSparseCooKernel,
565 566
                   float,
                   double,
567
                   phi::dtype::float16,
568 569 570 571 572
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
573

574
PD_REGISTER_KERNEL(sparse_csr_to_coo,
575 576
                   GPU,
                   ALL_LAYOUT,
577
                   phi::sparse::SparseCsrToCooKernel,
578 579
                   float,
                   double,
580
                   phi::dtype::float16,
581 582 583 584 585
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
586

587
PD_REGISTER_KERNEL(sparse_coo_to_csr,
588 589
                   GPU,
                   ALL_LAYOUT,
590
                   phi::sparse::SparseCooToCsrKernel,
591 592
                   float,
                   double,
593
                   phi::dtype::float16,
594 595 596 597 598 599
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

600
PD_REGISTER_KERNEL(dense_to_sparse_csr,
601 602
                   GPU,
                   ALL_LAYOUT,
603
                   phi::sparse::DenseToSparseCsrKernel,
604 605
                   float,
                   double,
606
                   phi::dtype::float16,
607 608 609 610 611
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
612

613
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
614 615
                   GPU,
                   ALL_LAYOUT,
616
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
617 618
                   float,
                   double,
619
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
620 621 622 623 624 625
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

626
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
627 628
                   GPU,
                   ALL_LAYOUT,
629
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
630 631
                   float,
                   double,
632
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
633 634 635 636 637
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

PD_REGISTER_KERNEL(coo_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}