update_loss_scaling_op.cc 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/amp/update_loss_scaling_op.h"
16

17 18 19
#include <cstring>
#include <string>
#include <vector>
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

class UpdateLossScalingOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("FoundInfinite"), "Input", "FoundInfinite",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasInput("PrevLossScaling"), "Input", "PrevLossScaling",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasInput("InGoodSteps"), "Input", "InGoodSteps",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasInput("InBadSteps"), "Input", "InBadSteps",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasOutput("LossScaling"), "Output", "LossScaling",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasOutput("OutGoodSteps"), "Output", "OutGoodSteps",
                   "update_loss_scaling");
    OP_INOUT_CHECK(ctx->HasOutput("OutBadSteps"), "Output", "OutBadSteps",
                   "update_loss_scaling");
45 46 47 48 49 50 51 52 53 54 55 56 57

    if (ctx->HasInputs("X") || ctx->HasOutputs("Out")) {
      PADDLE_ENFORCE_EQ(
          ctx->Inputs("X").size(), ctx->Outputs("Out").size(),
          platform::errors::InvalidArgument(
              "The input(X) and output(Out) should have same size in "
              "Operator(update_loss_scaling), size of input(X) is %d "
              "and size of output(Out) is %d.",
              ctx->Inputs("X").size(), ctx->Outputs("Out").size()));
      auto x_dims = ctx->GetInputsDim("X");
      ctx->SetOutputsDim("Out", x_dims);
    }

58 59 60 61 62 63 64 65
    ctx->SetOutputDim("LossScaling", {1});
    ctx->SetOutputDim("OutGoodSteps", {1});
    ctx->SetOutputDim("OutBadSteps", {1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
66 67 68 69 70 71
    auto dtype = framework::proto::VarType::FP32;
    if (ctx.MultiInputVar("X").size() >= 1) {
      dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    }

    return framework::OpKernelType(dtype, ctx.GetPlace());
72
  }
73 74 75 76 77 78 79 80 81 82 83 84

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
#ifndef PADDLE_WITH_XPU
    if (var_name == "FoundInfinite" || var_name == "StopUpdate") {
      return expected_kernel_type;
    }
#endif
    return framework::OperatorWithKernel::GetKernelTypeForVar(
        var_name, tensor, expected_kernel_type);
  }
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
};

class UpdateLossScalingOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensors) The input tensors of update_loss_scaling operator.")
        .AsDuplicable();
    AddInput("FoundInfinite",
             "(Tensor) 1-dim tensor, contains a bool scalar, which indicates "
             "whether there is any infinite gradient.");
    AddInput("PrevLossScaling",
             "(Tensor) 1-dim tensor, previous loss scaling.");
    AddInput("InGoodSteps",
             "(Tensor) 1-dim tensor, accumulates good steps in which all "
             "gradients are finite.");
    AddInput("InBadSteps",
             "(Tensor) 1-dim tensor, accumulates bad steps in which some "
             "gradients are infinite.");
    AddOutput("Out",
              "(Tensors) The output tensor of update_loss_scaling operator.")
        .AsDuplicable();
    AddOutput("LossScaling", "(Tensor) 1-dim tensor, updated loss scaling.");
    AddOutput("OutGoodSteps", "(Tensor) 1-dim tensor, pdated good steps.");
    AddOutput("OutBadSteps", "(Tensor) 1-dim tensor, updated bad steps.");
110 111 112 113
    AddOutput("StopUpdate",
              "(Tensor) 1-dim tensor. Stop updating loss scaling, and just "
              "zero inputs. It has higher priority than Attr(stop_update).")
        .AsDispensable();
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    AddAttr<int>("incr_every_n_steps",
                 "A value represents increasing loss scaling every n "
                 "consecutive steps with finite gradients.");
    AddAttr<int>("decr_every_n_nan_or_inf",
                 "A value represents decreasing loss scaling every n "
                 "accumulated steps with nan or inf gradients.");
    AddAttr<float>("incr_ratio",
                   "The multiplier to use when increasing the loss scaling.")
        .AddCustomChecker([](float incr_ratio) {
          PADDLE_ENFORCE_EQ(incr_ratio > 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'incr_ratio' should be greater than 1, but "
                                "the received is %f",
                                incr_ratio));
        });
    AddAttr<float>(
        "decr_ratio",
        "The less-than-one-multiplier to use when decreasing loss scaling.")
        .AddCustomChecker([](float decr_ratio) {
          PADDLE_ENFORCE_EQ(decr_ratio > 0.0f && decr_ratio < 1.0f, true,
                            platform::errors::InvalidArgument(
135
                                "'decr_ratio' should be between 0 and 1, but "
136 137 138
                                "the received is %f",
                                decr_ratio));
        });
139 140 141
    AddAttr<bool>("stop_update",
                  "Stop updating loss scaling, and just zero inputs.")
        .SetDefault(false);
142 143 144 145 146 147 148 149 150 151
    AddComment(R"DOC(
Update loss scaling according to overall gradients. If all gradients is 
finite after incr_every_n_steps, loss scaling will increase by incr_ratio. 
Otherwise, loss scaling will decrease by decr_ratio after
decr_every_n_nan_or_inf steps and each step some gradients are infinite.

)DOC");
  }
};

152 153
template <typename T, bool IsFoundInfOnCPU>
class UpdateLossScalingFunctor<platform::CPUDeviceContext, T, IsFoundInfOnCPU> {
154 155 156 157 158 159 160 161
 public:
  void operator()(const platform::CPUDeviceContext& ctx,
                  const bool* found_inf_data, const T* pre_loss_scaling_data,
                  const int* good_in_data, const int* bad_in_data,
                  const int incr_every_n_steps,
                  const int decr_every_n_nan_or_inf, const float incr_ratio,
                  const float decr_ratio, T* updated_loss_scaling_data,
                  int* good_out_data, int* bad_out_data) const {
162 163 164 165
    PADDLE_ENFORCE_EQ(
        IsFoundInfOnCPU, true,
        platform::errors::InvalidArgument(
            "The Input(FoundInfinite) should be on the CPUPlace."));
166 167 168 169 170 171 172 173
    Update<T>(found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data,
              incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio,
              decr_ratio, updated_loss_scaling_data, good_out_data,
              bad_out_data);
  }
};

template <typename T>
174
class LazyZeros<platform::CPUDeviceContext, T> {
175 176 177 178 179
 public:
  void operator()(const platform::CPUDeviceContext& dev_ctx,
                  const bool* found_inf_data,
                  const std::vector<const framework::Tensor*>& xs,
                  const std::vector<framework::Tensor*>& outs) const {
180 181 182 183 184 185
    for (size_t i = 0; i < xs.size(); ++i) {
      auto* out = outs[i];
      T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
      int num = out->numel();
      if (*found_inf_data) {
        VLOG(1) << "-- UpdateLossScaling: Find infinite grads. --";
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        std::memset(out_data, 0, num * sizeof(T));
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(
    update_loss_scaling, ops::UpdateLossScalingOp,
    ops::UpdateLossScalingOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(update_loss_scaling,
                       ops::UpdateLossScalingKernel<CPU, float>,
                       ops::UpdateLossScalingKernel<CPU, double>);