data_feed.cc 47.7 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24 25
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
D
dongdaxiang 已提交
26
#endif
27
#include <utility>
28
#include "gflags/gflags.h"
W
Wang Guibao 已提交
29 30 31
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
32 33
#include "io/fs.h"
#include "io/shell.h"
W
Wang Guibao 已提交
34 35
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
36
#include "paddle/fluid/framework/fleet/box_wrapper.h"
37
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
38
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
39 40 41 42

namespace paddle {
namespace framework {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void RecordCandidateList::ReSize(size_t length) {
  _mutex.lock();
  _capacity = length;
  CHECK(_capacity > 0);  // NOLINT
  _candidate_list.clear();
  _candidate_list.resize(_capacity);
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::ReInit() {
  _mutex.lock();
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
  _mutex.lock();
  size_t index = 0;
  ++_total_size;
  auto fleet_ptr = FleetWrapper::GetInstance();
  if (!_full) {
    _candidate_list[_cur_size++] = record;
    _full = (_cur_size == _capacity);
  } else {
    CHECK(_cur_size == _capacity);
    index = fleet_ptr->LocalRandomEngine()() % _total_size;
    if (index < _capacity) {
      _candidate_list[index] = record;
    }
  }
  index = fleet_ptr->LocalRandomEngine()() % _cur_size;
  *result = _candidate_list[index];
  _mutex.unlock();
}

W
Wang Guibao 已提交
84 85 86 87
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
88 89 90 91 92
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
93 94 95 96 97
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
98
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
99
  CheckInit();
100 101
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
102 103 104 105 106 107 108
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
109 110 111
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
112 113 114 115
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
116 117 118 119 120 121 122
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
123 124
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
125
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
126 127
    return false;
  }
128 129
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
130 131 132 133 134 135 136 137 138 139 140 141
  return true;
}

void DataFeed::CheckInit() {
  PADDLE_ENFORCE(finish_init_, "Initialization did not succeed.");
}

void DataFeed::CheckSetFileList() {
  PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed.");
}

void DataFeed::CheckStart() {
142 143 144
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
145 146
}

H
hutuxian 已提交
147 148 149 150 151 152 153
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

154 155 156 157 158 159 160 161 162 163 164 165
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
#else
    PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
  }
}

W
Wang Guibao 已提交
166 167 168 169
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
  PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size);
  queue_size_ = queue_size;
170
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
171
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
172 173 174 175 176
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
177 178
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
179 180 181 182 183 184 185

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
186
#ifdef _LINUX
187 188 189 190 191 192 193
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
194
      queue_->Put(instance);
195
    }
W
Wang Guibao 已提交
196
  }
197
  queue_->Close();
D
dongdaxiang 已提交
198
#endif
W
Wang Guibao 已提交
199 200 201 202
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
203
#ifdef _LINUX
W
Wang Guibao 已提交
204 205 206 207
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
208 209
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
210 211 212 213 214 215 216 217 218
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
219 220 221
#else
  return 0;
#endif
W
Wang Guibao 已提交
222 223
}

224
// explicit instantiation
W
Wang Guibao 已提交
225 226
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

227 228
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
229 230
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
231 232 233
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
234
  this->parse_ins_id_ = false;
235
  this->parse_content_ = false;
236 237 238
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
239 240 241
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
242 243 244 245
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
246
#ifdef _LINUX
J
jiaqi 已提交
247 248 249 250 251
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
252
  }
X
xjqbest 已提交
253
#endif
J
jiaqi 已提交
254
  this->finish_start_ = true;
255 256 257 258 259
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
260
#ifdef _LINUX
J
jiaqi 已提交
261 262 263 264 265
  this->CheckStart();
  CHECK(output_channel_ != nullptr);
  CHECK(consume_channel_ != nullptr);
  VLOG(3) << "output_channel_ size=" << output_channel_->Size()
          << ", consume_channel_ size=" << consume_channel_->Size()
X
xujiaqi01 已提交
266
          << ", thread_id=" << thread_id_;
267
  int index = 0;
D
dongdaxiang 已提交
268
  T instance;
J
jiaqi 已提交
269 270 271 272
  std::vector<T> ins_vec;
  ins_vec.reserve(this->default_batch_size_);
  while (index < this->default_batch_size_) {
    if (output_channel_->Size() == 0) {
D
dongdaxiang 已提交
273
      break;
274
    }
J
jiaqi 已提交
275 276 277 278
    output_channel_->Get(instance);
    ins_vec.push_back(instance);
    ++index;
    consume_channel_->Put(std::move(instance));
D
dongdaxiang 已提交
279
  }
J
jiaqi 已提交
280 281
  this->batch_size_ = index;
  VLOG(3) << "batch_size_=" << this->batch_size_
282
          << ", thread_id=" << thread_id_;
J
jiaqi 已提交
283
  if (this->batch_size_ != 0) {
D
dongdaxiang 已提交
284 285
    PutToFeedVec(ins_vec);
  } else {
J
jiaqi 已提交
286 287 288 289
    VLOG(3) << "finish reading, output_channel_ size="
            << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
D
dongdaxiang 已提交
290
  }
J
jiaqi 已提交
291
  return this->batch_size_;
X
xjqbest 已提交
292 293 294
#else
  return 0;
#endif
295 296
}

297
template <typename T>
J
jiaqi 已提交
298 299 300 301 302 303 304
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
305 306 307
}

template <typename T>
J
jiaqi 已提交
308 309
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
310 311
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

330 331 332 333 334 335 336 337 338 339
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

340 341 342 343 344
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

360 361 362 363 364
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

365 366
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
367
#ifdef _LINUX
X
xujiaqi01 已提交
368
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
369
  std::string filename;
J
jiaqi 已提交
370
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
371 372
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
373
    int err_no = 0;
J
jiaqi 已提交
374 375 376 377
    this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
378
    T instance;
379 380
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
381
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
382 383
      writer << std::move(instance);
      instance = T();
384
    }
J
jiaqi 已提交
385
    writer.Flush();
386
    timeline.Pause();
387 388
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
389
            << " seconds, thread_id=" << thread_id_;
390
  }
X
xujiaqi01 已提交
391
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
392
#endif
393 394
}

395
// explicit instantiation
J
jiaqi 已提交
396
template class InMemoryDataFeed<Record>;
397

W
Wang Guibao 已提交
398 399 400 401 402 403 404 405 406 407 408
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
409 410
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
411 412 413 414
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
415 416
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
417 418 419 420 421 422 423
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
424 425
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
426 427 428
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
429 430
      std::vector<int> local_shape;
      if (slot.is_dense()) {
431
        for (int j = 0; j < slot.shape_size(); ++j) {
432 433
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
434
          }
435 436
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
437
          }
438 439
        }
      }
440
      for (int j = 0; j < slot.shape_size(); ++j) {
441
        local_shape.push_back(slot.shape(j));
442 443
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
444 445 446
    }
  }
  feed_vec_.resize(use_slots_.size());
447
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
448 449 450
  finish_init_ = true;
}

D
dongdaxiang 已提交
451
void MultiSlotDataFeed::ReadThread() {
452
#ifdef _LINUX
453 454 455 456
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
457
    CHECK(fp_ != nullptr);
458 459 460 461 462
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
463
      queue_->Put(instance);
464
    }
D
dongdaxiang 已提交
465
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
466
  }
467
  queue_->Close();
468
#endif
D
dongdaxiang 已提交
469 470
}

W
Wang Guibao 已提交
471
bool MultiSlotDataFeed::CheckFile(const char* filename) {
472
#ifdef _LINUX
W
Wang Guibao 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
499
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
500
      if (num < 0) {
501 502
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
503 504 505
                << filename << ">";
        return false;
      } else if (num == 0) {
506
        VLOG(0)
W
Wang Guibao 已提交
507 508 509 510
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
511
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
512 513
                << filename << ">";
        return false;
X
xjqbest 已提交
514
      } else if (errno == ERANGE || num > INT_MAX) {
515 516
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
517 518 519 520 521 522 523
                << filename << ">";
        return false;
      }
      if (all_slots_type_[i] == "float") {
        for (int i = 0; i < num; ++i) {
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
524
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
525
                       "representable values for float";
526
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
527 528 529 530
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
531 532
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
533 534 535 536 537 538 539 540
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
        for (int i = 0; i < num; ++i) {
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
541
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
542
                       "representable values for uint64_t";
543
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
544 545 546 547
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
548 549
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
550 551 552 553 554
                    << filename << ">";
            return false;
          }
        }
      } else {
555
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
556 557 558 559
                << "> is not supported";
        return false;
      }
    }
560 561 562
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
563 564 565 566 567
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
568 569 570 571 572 573 574 575
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
576 577 578 579
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
580
#endif
W
Wang Guibao 已提交
581 582 583
  return true;
}

D
dongdaxiang 已提交
584 585
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
586
#ifdef _LINUX
587 588 589
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
590 591
    return false;
  } else {
592 593 594
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
595 596
    const char* str = reader.get();
    std::string line = std::string(str);
597
    // VLOG(3) << line;
D
dongdaxiang 已提交
598 599 600 601 602
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
603 604 605 606 607 608 609 610
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s",
              str));
D
dongdaxiang 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
627 628 629 630
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
631 632 633 634 635
        }
      }
    }
    return true;
  }
636 637 638
#else
  return true;
#endif
D
dongdaxiang 已提交
639 640
}

W
Wang Guibao 已提交
641
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
642
#ifdef _LINUX
W
Wang Guibao 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
661

W
Wang Guibao 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
685 686
#endif
  return false;
W
Wang Guibao 已提交
687 688 689 690 691
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
692
#ifdef _LINUX
W
Wang Guibao 已提交
693 694 695 696 697 698 699
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
700

W
Wang Guibao 已提交
701 702 703
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
704
#endif
W
Wang Guibao 已提交
705 706 707 708
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
709
#ifdef _LINUX
W
Wang Guibao 已提交
710
  for (size_t i = 0; i < use_slots_.size(); ++i) {
711 712 713
    if (feed_vec_[i] == nullptr) {
      continue;
    }
W
Wang Guibao 已提交
714 715 716
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
717

W
Wang Guibao 已提交
718 719
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
720 721 722
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
723 724 725
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
726
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
727 728 729
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
730
    }
731

732 733 734
    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
735 736 737 738
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
739
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
740 741
    }
  }
X
xjqbest 已提交
742
#endif
W
Wang Guibao 已提交
743 744
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
760 761
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
762 763 764 765 766 767 768
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
769 770
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
771 772 773
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
774 775
      std::vector<int> local_shape;
      if (slot.is_dense()) {
776
        for (int j = 0; j < slot.shape_size(); ++j) {
777 778
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
779
          }
780 781
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
782
          }
783 784
        }
      }
785
      for (int j = 0; j < slot.shape_size(); ++j) {
786
        local_shape.push_back(slot.shape(j));
787 788
      }
      use_slots_shape_.push_back(local_shape);
789 790 791 792 793 794 795
    }
  }
  feed_vec_.resize(use_slots_.size());
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

J
jiaqi 已提交
810
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
811
#ifdef _LINUX
812 813 814 815 816 817 818
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
819
    // VLOG(3) << line;
820 821
    char* endptr = const_cast<char*>(str);
    int pos = 0;
822 823 824 825 826 827 828 829 830 831 832 833
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
834 835 836 837 838 839 840 841 842 843 844 845
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
866 867 868 869 870 871 872 873 874 875 876
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
      if (idx != -1) {
J
jiaqi 已提交
877
        if (all_slots_type_[i][0] == 'f') {  // float
878 879
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
880
            // if float feasign is equal to zero, ignore it
881 882
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
883 884 885 886 887
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
888
          }
J
jiaqi 已提交
889
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
890 891
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
892
            // if uint64 feasign is equal to zero, ignore it
893 894
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
895 896 897 898 899
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
900 901 902 903 904 905 906 907 908 909 910 911
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
912 913
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
914 915
    return true;
  }
X
xjqbest 已提交
916 917 918
#else
  return false;
#endif
919 920
}

J
jiaqi 已提交
921
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
922
#ifdef _LINUX
923 924
  std::string line;
  if (getline(file_, line)) {
925
    VLOG(3) << line;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);

      if (idx != -1) {
J
jiaqi 已提交
942
        if (all_slots_type_[i][0] == 'f') {  // float
943 944
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
945 946 947 948 949 950
            if (fabs(feasign) < 1e-6) {
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
951
          }
J
jiaqi 已提交
952
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
953 954
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
955 956 957 958 959 960
            if (feasign == 0) {
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
961 962 963 964 965 966 967 968 969
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
970 971 972
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
973 974 975
  } else {
    return false;
  }
X
xjqbest 已提交
976 977
#endif
  return false;
978 979
}

J
jiaqi 已提交
980 981
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
982
#ifdef _LINUX
J
jiaqi 已提交
983 984 985 986 987 988 989
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
990 991 992 993
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
994 995
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
996 997
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
1024 1025 1026 1027
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1028 1029 1030
    if (feed_vec_[i] == nullptr) {
      continue;
    }
J
jiaqi 已提交
1031 1032
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
1033
    if (type[0] == 'f') {  // float
J
jiaqi 已提交
1034
      float* feasign = batch_float_feasigns[i].data();
1035 1036 1037
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1038 1039
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
J
jiaqi 已提交
1040
      uint64_t* feasign = batch_uint64_feasigns[i].data();
1041
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1042 1043
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1044
    }
J
jiaqi 已提交
1045 1046
    auto& slot_offset = offset[i];
    LoD data_lod{slot_offset};
1047 1048
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
1049 1050 1051 1052
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1053
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1054 1055
    }
  }
X
xjqbest 已提交
1056
#endif
1057 1058
}

H
hutuxian 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1069 1070 1071
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1072 1073 1074 1075
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1076 1077 1078
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
      PADDLE_ENFORCE(
          total_dims == total_instance,
          "The actual data size of slot[%s] doesn't match its declaration",
          use_slots_[i].c_str());
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

  PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data");
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1146
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1147 1148 1149 1150 1151
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1152
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
  PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str());

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
  PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno));

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.");
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
                 "offset_ != end_");
  return true;
}
#endif

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
  return box_ptr->PassFlag();  // join: 1, update: 0
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r->uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset[i];
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

W
Wang Guibao 已提交
1497 1498
}  // namespace framework
}  // namespace paddle