test_reshape_op.py 7.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
21
import paddle.fluid as fluid
Y
Yibing Liu 已提交
22

C
caoying03 已提交
23

24
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
25 26
class TestReshapeOp(OpTest):
    def setUp(self):
27 28 29 30 31 32 33 34
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
35

36 37 38 39
    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)
40 41

    def test_check_output(self):
42

43
        self.check_output(no_check_set=['XShape'])
44 45 46 47 48

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


49 50 51 52 53
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
54 55


56 57 58 59 60
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
C
caoying03 已提交
61

C
caoying03 已提交
62

63
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
64 65
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
66
        self.init_data()
67
        self.op_type = "reshape2"
68

69
        self.inputs = {
70
            "X": np.random.random(self.ori_shape).astype("float32"),
71
            "Shape": np.array(
72
                self.actual_shape, dtype="int32")
73
        }
74
        self.attrs = {"shape": self.new_shape}
75
        self.outputs = {
76 77
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
78
        }
79

80 81 82 83 84
    def init_data(self):
        self.ori_shape = (6, 5)
        self.new_shape = (0, -1, 5)
        self.actual_shape = (2, 3, 5)

85
    def test_check_output(self):
86
        self.check_output(no_check_set=['XShape'])
87

G
guosheng 已提交
88
    def test_check_grad(self):
C
chengduo 已提交
89
        self.check_grad(["X"], "Out")
90 91


92 93
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
94 95 96 97 98 99 100 101 102 103 104 105 106
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
        self.shape = (2, 0, 3, -1)


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


171
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
172 173 174 175
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
176
        self.shape = (5, -1, -1)
177 178


179
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
180 181 182 183
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        self.shape = (2, 0, 3, -1)


# Test python API
class TestReshapeAPI(OpTest):
    # situation 1: have shape( list, no tensor), no actual shape(Tensor)
    def test_1(self):
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        positive_five = fluid.layers.fill_constant([1], "int32", 5)
        x = fluid.layers.data(
            name="x", shape=[2, 25], append_batch_size=False, dtype="float32")

        actual_shape = fluid.layers.data(
            name="shape",
            shape=[1, 3],
            append_batch_size=False,
            dtype="float32")

        # situation 1: have shape( list, no tensor), no actual shape(Tensor)
        out_1 = fluid.layers.reshape(x, shape)
        # situation 2: have shape(list, no tensor), have actual shape(Tensor)
        out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape)
        # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
        out_3 = fluid.layers.reshape(x, shape=[positive_five, 10])
        # Situation 4: have shape(Tensor), no actual shape(Tensor)
        out_4 = fluid.layers.reshape(x, shape=actual_shape)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4 = exe.run(
            fluid.default_main_program(),
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
223 224


Y
ying 已提交
225
if __name__ == "__main__":
Y
Yibing Liu 已提交
226
    unittest.main()