elementwise_op_npu_test.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef _WIN32
#include <unistd.h>
#endif

#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"

namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;

USE_OP(elementwise_add);
USE_OP_DEVICE_KERNEL(elementwise_add, NPU);
USE_OP(elementwise_sub);
USE_OP_DEVICE_KERNEL(elementwise_sub, NPU);

template <typename T>
41
void Compare(f::Scope *scope, const p::DeviceContext &ctx,
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
             std::string op_type) {
  // init
  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();

  std::vector<T> init_x;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_x.push_back(static_cast<T>(1.0));
  }

  std::vector<T> init_y;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_y.push_back(static_cast<T>(2.0));
  }

60
  paddle::framework::TensorFromVector(init_x, ctx, tensor_x);
61
  tensor_x->Resize({10, 10});
62
  paddle::framework::TensorFromVector(init_y, ctx, tensor_y);
63 64 65 66 67 68 69 70 71 72 73 74 75 76
  tensor_y->Resize({10, 10});

  auto place = ctx.GetPlace();
  auto out = scope->Var("Out");
  auto tensor_out = out->GetMutable<f::LoDTensor>();

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(op_type, {{"X", {"X"}}, {"Y", {"Y"}}},
                                    {{"Out", {"Out"}}}, attrs);

  op->Run(*scope, place);

  std::vector<T> out_vec;
77
  paddle::framework::TensorToVector(*tensor_out, ctx, &out_vec);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

  ctx.Wait();
  float expected;
  if (op_type == "elementwise_add") {
    expected = 3.0;
  } else if (op_type == "elementwise_sub") {
    expected = -1.0;
  }
  EXPECT_EQ(out_vec.size(), init_x.size());
  for (uint32_t i = 0; i < out_vec.size(); i++) {
    EXPECT_EQ(out_vec[i], static_cast<T>(expected));
  }
}

template <typename T>
93
void CompareGrad(f::Scope *scope, const p::DeviceContext &ctx,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                 std::string op_type) {
  // init
  auto dout = scope->Var("DOut");
  auto tensor_dout = dout->GetMutable<f::LoDTensor>();
  tensor_dout->Resize({2, 3, 5});

  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();
  tensor_x->Resize({2, 3, 5});

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();
  tensor_y->Resize({1, 5});

  auto dx = scope->Var("DX");
  auto tensor_dx = dx->GetMutable<f::LoDTensor>();

  auto dy = scope->Var("DY");
  auto tensor_dy = dy->GetMutable<f::LoDTensor>();

  std::vector<T> init_dout;
  for (int64_t i = 0; i < tensor_dout->numel(); ++i) {
    init_dout.push_back(static_cast<T>(1.0));
  }

119
  paddle::framework::TensorFromVector(init_dout, ctx, tensor_dout);
120 121 122 123 124 125 126 127 128 129 130 131
  tensor_dout->Resize({2, 3, 5});

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(
      op_type, {{"Out@GRAD", {"DOut"}}, {"X", {"X"}}, {"Y", {"Y"}}},
      {{"X@GRAD", {"DX"}}, {"Y@GRAD", {"DY"}}}, attrs);

  auto place = ctx.GetPlace();
  op->Run(*scope, place);

  std::vector<T> dx_vec;
132
  paddle::framework::TensorToVector(*tensor_dx, ctx, &dx_vec);
133 134

  std::vector<T> dy_vec;
135
  paddle::framework::TensorToVector(*tensor_dy, ctx, &dy_vec);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

  ctx.Wait();
  float expected_x, expected_y;
  if (op_type == "elementwise_add_grad") {
    expected_x = 1.0;
    expected_y = 6.0;
  } else if (op_type == "elementwise_sub_grad") {
    expected_x = 1.0;
    expected_y = -6.0;
  }

  for (uint32_t i = 0; i < dx_vec.size(); i++) {
    EXPECT_EQ(dx_vec[i], static_cast<T>(expected_x));
  }
  for (uint32_t i = 0; i < dy_vec.size(); i++) {
    EXPECT_EQ(dy_vec[i], static_cast<T>(expected_y));
  }
}

TEST(elementwise_add, NPU_fp32) {
  f::Scope scope;
157 158
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_add");
159 160 161 162
}

TEST(elementwise_sub, NPU_fp32) {
  f::Scope scope;
163 164
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_sub");
165 166 167 168
}

TEST(elementwise_sub, NPU_fp16) {
  f::Scope scope;
169 170
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<p::float16>(&scope, *ctx, "elementwise_sub");
171 172 173 174
}

TEST(elementwise_sub_grad, NPU) {
  f::Scope scope;
175 176
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_sub_grad");
177
}
178 179 180

TEST(elementwise_add_grad, NPU) {
  f::Scope scope;
181 182
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_add_grad");
183
}