rpc_server_test.cc 10.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
tangwei12 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
T
tangwei12 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
T
tangwei12 已提交
8

9 10 11 12 13 14
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <stdlib.h>
16
#include <unistd.h>
17
#include <memory>
18
#include <string>
Y
Yancey1989 已提交
19
#include <thread>  // NOLINT
20
#include <unordered_map>
21 22

#include "gtest/gtest.h"
Y
Yancey1989 已提交
23
#include "paddle/fluid/framework/block_desc.h"
Y
Yancey1989 已提交
24 25 26
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

W
Wu Yi 已提交
27
#include "paddle/fluid/operators/distributed/distributed.h"
28
#include "paddle/fluid/operators/distributed/heart_beat_monitor.h"
S
seiriosPlus 已提交
29
#include "paddle/fluid/operators/distributed/large_scale_kv.h"
30 31 32
#include "paddle/fluid/operators/distributed/request_handler_impl.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/rpc_server.h"
33

34 35
namespace framework = paddle::framework;
namespace platform = paddle::platform;
36
namespace distributed = paddle::operators::distributed;
37

38
USE_NO_KERNEL_OP(lookup_sparse_table_read);
39
USE_OP(scale);
Y
Yancey1989 已提交
40

41 42
std::unique_ptr<distributed::RPCServer> g_rpc_service;
std::unique_ptr<distributed::RequestHandler> g_req_handler;
43

44
framework::BlockDesc* AppendSendAndRecvBlock(framework::ProgramDesc* program) {
Y
Yancey1989 已提交
45 46
  auto root_block = program->MutableBlock(0);
  auto* block = program->AppendBlock(*root_block);
Y
Yancey1989 已提交
47

48 49 50 51 52 53 54
  framework::OpDesc* op = block->AppendOp();
  op->SetType("scale");
  op->SetInput("X", {"x"});
  op->SetOutput("Out", {"res"});
  op->SetAttr("scale", 0.5f);

  auto& out = *root_block->Var("res");
55
  out.SetType(framework::proto::VarType::LOD_TENSOR);
56
  out.SetShape({1, 10});
Y
Yancey1989 已提交
57

Y
Yancey1989 已提交
58 59 60
  return block;
}

Y
Yancey1989 已提交
61 62
void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
  auto w_var = scope->Var("w");
Y
Yancey1989 已提交
63
  w_var->GetMutable<framework::SelectedRows>();
Y
Yancey1989 已提交
64

Y
Yancey1989 已提交
65
  auto out_var = scope->Var("out");
66
  out_var->GetMutable<framework::LoDTensor>();
Y
Yancey1989 已提交
67

Y
Yancey1989 已提交
68
  auto ids_var = scope->Var("ids");
69
  ids_var->GetMutable<framework::LoDTensor>();
70 71 72 73 74 75

  auto x_var = scope->Var("x");
  x_var->GetMutable<framework::LoDTensor>();

  auto res_var = scope->Var("res");
  res_var->GetMutable<framework::LoDTensor>();
Y
Yancey1989 已提交
76 77
}

Y
Yancey1989 已提交
78 79
void InitTensorsOnClient(framework::Scope* scope, platform::CPUPlace* place,
                         int64_t rows_numel) {
Y
Yancey1989 已提交
80
  CreateVarsOnScope(scope, place);
81 82 83 84
  auto ids_var = scope->Var("ids")->GetMutable<framework::LoDTensor>();
  int64_t* ids_ptr =
      ids_var->mutable_data<int64_t>(framework::DDim({rows_numel, 1}), *place);
  for (int64_t i = 0; i < rows_numel; ++i) ids_ptr[i] = i * 2;
85 86 87 88 89

  auto x_var = scope->Var("x")->GetMutable<framework::LoDTensor>();
  float* x_ptr =
      x_var->mutable_data<float>(framework::DDim({1, rows_numel}), *place);
  for (int64_t i = 0; i < rows_numel; ++i) x_ptr[i] = 1.0;
Y
Yancey1989 已提交
90 91
}

Y
Yancey1989 已提交
92 93
void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
                         int64_t rows_numel) {
Y
Yancey1989 已提交
94
  CreateVarsOnScope(scope, place);
Y
Yancey1989 已提交
95 96 97
  auto w = scope->Var("w")->GetMutable<framework::SelectedRows>();
  auto w_value = w->mutable_value();
  w_value->Resize({rows_numel, 10});
98
  for (int64_t i = 0; i < rows_numel; ++i) w->AutoGrownIndex(i, true);
Y
Yancey1989 已提交
99 100 101 102

  auto ptr = w_value->mutable_data<float>(*place);

  for (int64_t i = 0; i < w_value->numel(); ++i) {
Y
Yancey1989 已提交
103 104 105
    ptr[i] = static_cast<float>(i / 10);
  }
}
Y
Yancey1989 已提交
106

Y
Yancey1989 已提交
107
void StartServer(const std::string& rpc_name) {
Y
Yancey1989 已提交
108 109 110 111 112 113
  framework::ProgramDesc program;
  framework::Scope scope;
  platform::CPUPlace place;
  framework::Executor exe(place);
  platform::CPUDeviceContext ctx(place);

114 115 116
  std::unordered_map<std::string,
                     std::shared_ptr<framework::ExecutorPrepareContext>>
      prefetch_var_name_to_prepared;
Y
Yancey1989 已提交
117

118
  g_req_handler->SetProgram(&program);
119
  g_req_handler->SetPrefetchPreparedCtx(&prefetch_var_name_to_prepared);
120 121 122 123
  g_req_handler->SetDevCtx(&ctx);
  g_req_handler->SetScope(&scope);
  g_req_handler->SetExecutor(&exe);

Y
Yancey1989 已提交
124
  g_rpc_service->RegisterRPC(rpc_name, g_req_handler.get());
125 126 127

  distributed::HeartBeatMonitor::Init(2, true, "w@grad");

128 129 130
  g_req_handler->SetRPCServer(g_rpc_service.get());

  std::thread server_thread(
131
      std::bind(&distributed::RPCServer::StartServer, g_rpc_service.get()));
Y
Yancey1989 已提交
132

133
  server_thread.join();
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void StartSendAndRecvServer(const std::string& rpc_name) {
  framework::ProgramDesc program;
  framework::Scope scope;
  platform::CPUPlace place;
  framework::Executor exe(place);
  platform::CPUDeviceContext ctx(place);
  auto block = AppendSendAndRecvBlock(&program);
  std::string in_var_name("x");
  std::vector<int> prefetch_block_ids{block->ID()};
  auto prepared = exe.Prepare(program, prefetch_block_ids);
  InitTensorsOnServer(&scope, &place, 10);

  std::unordered_map<std::string,
                     std::shared_ptr<framework::ExecutorPrepareContext>>
      grad_to_prepared_ctx;
  grad_to_prepared_ctx[in_var_name] = prepared[0];

  g_req_handler->SetProgram(&program);
  g_req_handler->SetGradToPreparedCtx(&grad_to_prepared_ctx);
  g_req_handler->SetDevCtx(&ctx);
  g_req_handler->SetScope(&scope);
  g_req_handler->SetExecutor(&exe);

  g_rpc_service->RegisterRPC(rpc_name, g_req_handler.get());
  g_req_handler->SetRPCServer(g_rpc_service.get());

  std::thread server_thread(
      std::bind(&distributed::RPCServer::StartServer, g_rpc_service.get()));

  server_thread.join();
}

Y
Yancey1989 已提交
168
TEST(COMPLETE, CPU) {
169 170
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
T
tangwei12 已提交
171 172
  g_req_handler.reset(
      new distributed::RequestSendHandler(distributed::DistributedMode::kSync));
Y
Yancey1989 已提交
173 174
  g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 2));
  distributed::RPCClient* client =
W
Wu Yi 已提交
175
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
Y
Yancey1989 已提交
176
  PADDLE_ENFORCE(client != nullptr);
T
tangwei12 已提交
177
  std::thread server_thread(StartServer, distributed::kRequestSend);
Y
Yancey1989 已提交
178 179 180 181 182 183
  g_rpc_service->WaitServerReady();
  int port = g_rpc_service->GetSelectedPort();
  std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port);
  client->AsyncSendComplete(ep);
  client->Wait();

T
tangwei12 已提交
184
  EXPECT_EQ(g_rpc_service->GetClientNum(), 1);
Y
Yancey1989 已提交
185 186 187 188 189 190

  g_rpc_service->ShutDown();
  server_thread.join();
  g_rpc_service.reset(nullptr);
  g_req_handler.reset(nullptr);
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

TEST(SENDANDRECV, CPU) {
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
  g_req_handler.reset(new distributed::RequestSendAndRecvHandler(
      distributed::DistributedMode::kAsync));
  g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 1));
  distributed::RPCClient* client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  PADDLE_ENFORCE_NE(client, nullptr,
                    platform::errors::InvalidArgument(
                        "Client Start Fail, Check Your Code & Env"));
  std::thread server_thread(StartSendAndRecvServer,
                            distributed::kRequestSendAndRecv);
  g_rpc_service->WaitServerReady();
  int port = g_rpc_service->GetSelectedPort();
  std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port);

  framework::Scope scope;
  platform::CPUPlace place;
  platform::CPUDeviceContext ctx(place);

  // create var on local scope
  int64_t rows_numel = 10;
  InitTensorsOnClient(&scope, &place, rows_numel);
  std::string in_var_name("x");
  std::string out_var_name("res");

  client->AsyncSendAndRecv(ep, ctx, scope, in_var_name, out_var_name);
  client->Wait();
  auto var = scope.Var(out_var_name);
  auto value = var->GetMutable<framework::LoDTensor>();
  auto ptr = value->mutable_data<float>(place);

  for (int64_t i = 0; i < rows_numel; ++i) {
    EXPECT_EQ(ptr[i], 0.5);
  }
  g_rpc_service->ShutDown();
  server_thread.join();
  LOG(INFO) << "begin reset";
  g_rpc_service.reset(nullptr);
  g_req_handler.reset(nullptr);
}
S
seiriosPlus 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

void StartCheckpointServer(const std::string& rpc_name) {
  framework::ProgramDesc program;
  framework::Scope scope;
  platform::CPUPlace place;
  framework::Executor exe(place);
  platform::CPUDeviceContext ctx(place);

  std::vector<distributed::SparseMeta> metas;

  auto meta = distributed::SparseMeta();
  meta.name = "embedding.block0";
  meta.value_names = "Param";
  meta.value_dims = "64";
  meta.mode = "0";
  meta.grad_name = "embedding@Grad";
  meta.cached_varnames = "kSparseIds";
  meta.initializer_attrs = "fill_constant&1.0";
  meta.entry = "none";
  metas.push_back(meta);
  distributed::LargeScaleKV::Init(metas);

  std::unordered_map<std::string,
                     std::shared_ptr<framework::ExecutorPrepareContext>>
      prefetch_var_name_to_prepared;

  g_req_handler->SetProgram(&program);
  g_req_handler->SetPrefetchPreparedCtx(&prefetch_var_name_to_prepared);
  g_req_handler->SetDevCtx(&ctx);
  g_req_handler->SetScope(&scope);
  g_req_handler->SetExecutor(&exe);

  g_rpc_service->RegisterRPC(rpc_name, g_req_handler.get());

  g_req_handler->SetRPCServer(g_rpc_service.get());

  std::thread server_thread(
      std::bind(&distributed::RPCServer::StartServer, g_rpc_service.get()));

  server_thread.join();
}

TEST(LARGE_SCALE_CHECKPOINT, CPU) {
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
  g_req_handler.reset(new distributed::RequestNotifyHandler(
      distributed::DistributedMode::kAsync));
  g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 1));
  distributed::RPCClient* client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  PADDLE_ENFORCE_NE(client, nullptr,
                    platform::errors::InvalidArgument(
                        "Client Start Fail, Check Your Code & Env"));

  std::thread server_thread(StartCheckpointServer, distributed::kRequestNotify);

  g_rpc_service->WaitServerReady();
  int port = g_rpc_service->GetSelectedPort();
  std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port);

  framework::Scope scope;
  platform::CPUPlace place;
  platform::CPUDeviceContext ctx(place);

  auto save_path = string::Sprintf("%s/%s/%s", "/tmp/large_scale_table/base",
                                   "embedding", "embedding.block0");
  int mode = 0;
  client->AsyncCheckpointNotify(ep, save_path, "embedding.block0", mode);
  client->Wait();

  save_path = string::Sprintf("%s/%s/%s", "/tmp/large_scale_table/delta",
                              "embedding", "embedding.block0");
  mode = 1;
  client->AsyncCheckpointNotify(ep, save_path, "embedding.block0", mode);
  client->Wait();

  g_rpc_service->ShutDown();
  server_thread.join();
  LOG(INFO) << "begin reset";
  g_rpc_service.reset(nullptr);
  g_req_handler.reset(nullptr);
}