init.cc 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
G
gongweibao 已提交
35
#if defined(PADDLE_WITH_DGC)
36 37 38
#include "dgc/dgc.h"
#endif

39
DECLARE_int32(paddle_num_threads);
40 41 42
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
43

D
dzhwinter 已提交
44 45 46
namespace paddle {
namespace framework {

47 48 49 50
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
51
std::once_flag gflags_init_flag;
X
Xin Pan 已提交
52
std::once_flag p2p_init_flag;
D
dzhwinter 已提交
53

54 55 56 57
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::once_flag dgc_init_flag;
#endif

58
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
59
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
60
    FLAGS_logtostderr = true;
W
wanghaoshuang 已提交
61
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
62 63 64 65 66 67 68 69 70
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
M
minqiyang 已提交
71
    VLOG(1) << "Init commandline: " << line;
D
dzhwinter 已提交
72 73 74
  });
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
90
          platform::CUDADeviceGuard guard(devices[i]);
91 92 93 94 95 96 97 98
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
121
void InitDevices(bool init_p2p) {
122 123 124
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
125
  /*Init all available devices by default */
126
  std::vector<int> devices;
127
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
128
  try {
129 130
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
131 132
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
133
  }
D
dzhwinter 已提交
134
#endif
135
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
136 137
}

138 139 140 141
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
142 143 144
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
145 146 147
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
148

149 150 151 152 153 154 155
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
156
  platform::DeviceTemporaryAllocator::Init();
Q
qingqing01 已提交
157

158
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
159
  platform::SetNumThreads(FLAGS_paddle_num_threads);
160
#endif
T
tensor-tang 已提交
161

T
tensor-tang 已提交
162
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
163
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
164 165 166 167
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
168 169 170 171 172 173 174 175 176 177

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
178 179
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
180
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
181
    } else if (platform::MayIUse(platform::avx)) {
182 183 184 185 186
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
187
#endif
188 189

#ifdef __AVX2__
T
tensor-tang 已提交
190 191
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
192 193 194 195
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
196 197
  }
#endif
198 199

#ifdef __AVX__
T
tensor-tang 已提交
200
  if (!platform::MayIUse(platform::avx)) {
201
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
202
  }
203 204
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
205 206

#endif
207 208
}

C
chengduo 已提交
209
#ifndef _WIN32
210
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
211 212
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
213
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
214 215 216 217 218 219 220 221 222
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
223
void InitGLOG(const std::string &prog_name) {
Y
Yang Yu 已提交
224 225 226
  // glog will not hold the ARGV[0] inside.
  // Use strdup to alloc a new string.
  google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
227 228 229 230
#ifndef _WIN32
  google::InstallFailureSignalHandler();
  google::InstallFailureWriter(&SignalHandle);
#endif
Y
Yang Yu 已提交
231 232
}

G
gongweibao 已提交
233
#if defined(PADDLE_WITH_DGC)
234 235 236 237 238 239 240 241 242
void InitDGC() {
  std::call_once(dgc_init_flag, []() {
    PADDLE_ENFORCE(paddle::communication::dgc::dynloadNcclLib());
  });
}
#else
void InitDGC() {}
#endif

D
dzhwinter 已提交
243 244
}  // namespace framework
}  // namespace paddle