dense_tensor.inl 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
/* The following members & interfaces were copied from framework::Tensor,
    so as to facilitate the unification of different Tensors

    Will be adjusted/removed/moved in the near future
*/
public:
/* Temporarily put InplaceVersion inside DenseTensor.
Will move to AutogradMeta as soon as we switch to Eager Dygraph.
*/
class InplaceVersion {
public:
  bool IsUnique() const { return inplace_version_ == 0; }
  void Bump() { ++inplace_version_; }
  uint32_t CurrentVersion() const { return inplace_version_; }
  void SetInplaceVersionToZero() { inplace_version_ = 0; }

private:
  uint32_t inplace_version_{0};
};

/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
40
explicit DenseTensor(paddle::experimental::DataType dtype);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor(intrusive_ptr<Storage> storage, const DenseTensorMeta& meta);

/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta);

inline bool IsInitialized() const { return holder_ != nullptr; }

template <typename T>
T* mutable_data(const paddle::platform::Place& place,
                size_t requested_size = 0);

template <typename T>
T* mutable_data(const DDim& dims,
                const paddle::platform::Place& place,
                size_t requested_size = 0);

void* mutable_data(const paddle::platform::Place& place,
66
                    paddle::experimental::DataType type,
67 68 69 70 71 72
                    size_t requested_size = 0);

void* mutable_data(const paddle::platform::Place& place,
                    size_t requested_size = 0);

void* mutable_data(const paddle::platform::Place& place,
73
                    paddle::experimental::DataType type,
74
                    const phi::Stream& stream);
75 76 77

/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
78
paddle::experimental::DataType type() const;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

// memory size returns the holding memory size in byte.
size_t memory_size() const;

void check_memory_size() const;

void set_layout(const paddle::framework::DataLayout layout);

void clear() {
  holder_.reset();
  meta_.offset = 0;
}

void ShareBufferWith(const DenseTensor& tensor);

void ShareDataTypeWith(const DenseTensor& tensor) {
  meta_.dtype = tensor.meta().dtype;
}

bool IsSharedBufferWith(const DenseTensor& src) const {
  return holder_ && holder_ == src.Holder();
}

102
const std::shared_ptr<phi::Allocation>& Holder() const { return holder_; }
103 104 105 106

void set_offset(size_t offset) { meta_.offset = offset; }
size_t offset() const { return meta_.offset; }

107
std::shared_ptr<phi::Allocation> MoveMemoryHolder() {
108 109 110
  return std::move(holder_);
}

111
void ResetHolder(const std::shared_ptr<phi::Allocation>& holder);
112

113
void ResetHolderWithType(const std::shared_ptr<phi::Allocation>& holder,
114
                        paddle::experimental::DataType type);
115

116
void set_type(paddle::experimental::DataType type);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

InplaceVersion& InplaceVersionCounter() {
  return *inplace_version_counter_;
}

/*! The internal of two tensors share the same memory block. */
DenseTensor& ShareDataWith(const DenseTensor& src);

/*! The internal of two tensors share the same inplace version counter. */
DenseTensor& ShareInplaceVersionCounterWith(const DenseTensor& src);

DenseTensor Slice(int64_t begin_idx, int64_t end_idx) const;

std::vector<DenseTensor> Split(int64_t split_size, int64_t axis) const;

std::vector<DenseTensor> Chunk(int64_t chunks, int64_t axis) const;

protected:
std::shared_ptr<InplaceVersion> inplace_version_counter_{std::make_shared<InplaceVersion>()};

/* @jim19930609: This is a hack
In general, it is badly designed to fuse MKLDNN-specific objects into a
generic Tensor.
We temporarily leave them here to unblock Tensor Unification progress.
In the final state, we should come up with a MKLDNN_Tensor and move the
following codes there.
*/
#ifdef PADDLE_WITH_MKLDNN

public:
inline dnnl::memory::format_tag format() const { return format_; }

inline void set_format(const dnnl::memory::format_tag format) {
  format_ = format;
}

protected:
/**
 * @brief the detail format of memory block which have layout as kMKLDNN
 *
 * @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
 *       nChw16c, etc. For a MKLDNN memory block, layout will be set as
 *       DataLayout::kMKLDNN meanwhile detail memory format will be kept in
 *       this field.
 */

dnnl::memory::format_tag format_ = dnnl::memory::format_tag::undef;
#endif

/* ------------------------------ */
/*   From framework::LoDTensor    */
/* ------------------------------ */
/* The following members & interfaces were copied from framework::Tensor,
    so as to facilitate the unification of different Tensors

    Will be adjusted/removed/moved in the near future
*/
public:
explicit DenseTensor(const LoD& lod);

void set_lod(const LoD& lod);

LoD* mutable_lod();

/*
* Get the start offset and end offset of an  element from LoD.
*/
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const;

size_t NumLevels() const;

size_t NumElements(size_t level = 0) const;