adam_kernel.cu 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/adam_kernel.h"

17
#include <math.h>  // for sqrt in CPU and CUDA
18

19 20 21 22 23 24 25 26
#include <vector>

#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
27
#include "paddle/phi/core/tensor_utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#include "paddle/phi/kernels/funcs/adam_functors.h"
#include "paddle/phi/kernels/funcs/for_range.h"

namespace phi {

template <typename T, typename MT>
__global__ void AdamKernelREG(MT beta1,
                              MT beta2,
                              MT epsilon,
                              MT beta1_pow_,
                              MT beta2_pow_,
                              const MT* moment1,
                              MT* moment1_out,
                              const MT* moment2,
                              MT* moment2_out,
                              const MT* lr_,
                              const T* grad,
                              const T* param,
                              T* param_out,
                              const MT* master_param,
                              MT* master_param_out,
                              int ndim) {
  MT lr = *lr_;
  MT beta1_pow = beta1_pow_;
  MT beta2_pow = beta2_pow_;

  int id = blockIdx.x * blockDim.x + threadIdx.x;

  for (; id < ndim; id += gridDim.x * blockDim.x) {
    MT p = master_param ? master_param[id] : static_cast<MT>(param[id]);
    MT g = static_cast<MT>(grad[id]);
    MT mom1 = static_cast<MT>(moment1[id]);
    MT mom2 = static_cast<MT>(moment2[id]);
    mom1 = beta1 * mom1 + (static_cast<MT>(1.0) - beta1) * g;
    mom2 = beta2 * mom2 + (static_cast<MT>(1.0) - beta2) * g * g;

    MT denom = (sqrt(mom2) / sqrt(static_cast<MT>(1.0) - beta2_pow)) + epsilon;
    p += (mom1 / denom) * (-(lr / (static_cast<MT>(1.0) - beta1_pow)));

    moment1_out[id] = mom1;
    moment2_out[id] = mom2;
    param_out[id] = static_cast<T>(p);
    if (master_param_out) {
      master_param_out[id] = p;
    }
  }
}

template <typename T, typename MT>
__global__ void AdamKernelMEM(MT beta1,
                              MT beta2,
                              MT epsilon,
                              const MT* beta1_pow_,
                              const MT* beta2_pow_,
                              const MT* moment1,
                              MT* moment1_out,
                              const MT* moment2,
                              MT* moment2_out,
                              const MT* lr_,
                              const T* grad,
                              const T* param,
                              T* param_out,
                              const MT* master_param,
                              MT* master_param_out,
                              int ndim) {
  MT lr = *lr_;
  MT beta1_pow = *beta1_pow_;
  MT beta2_pow = *beta2_pow_;

  int id = blockIdx.x * blockDim.x + threadIdx.x;

  for (; id < ndim; id += gridDim.x * blockDim.x) {
    MT p = master_param ? master_param[id] : static_cast<MT>(param[id]);
    MT g = static_cast<MT>(grad[id]);
    MT mom1 = static_cast<MT>(moment1[id]);
    MT mom2 = static_cast<MT>(moment2[id]);
    mom1 = beta1 * mom1 + (static_cast<MT>(1.0) - beta1) * g;
    mom2 = beta2 * mom2 + (static_cast<MT>(1.0) - beta2) * g * g;

    MT denom = (sqrt(mom2) / sqrt(static_cast<MT>(1.0) - beta2_pow)) + epsilon;
    p += (mom1 / denom) * (-(lr / (static_cast<MT>(1.0) - beta1_pow)));

    moment1_out[id] = mom1;
    moment2_out[id] = mom2;
    param_out[id] = static_cast<T>(p);
    if (master_param_out) {
      master_param_out[id] = p;
    }
  }
}

template <typename T>
__global__ void UpdateBetaPow(T beta1,
                              T beta2,
                              const T* beta1_pow_,
                              const T* beta2_pow_,
                              T* beta1_pow_out,
                              T* beta2_pow_out) {
  *beta1_pow_out = beta1 * beta1_pow_[0];
  *beta2_pow_out = beta2 * beta2_pow_[0];
}

template <typename T, typename Context>
void AdamDenseKernel(const Context& dev_ctx,
                     const DenseTensor& param,
                     const DenseTensor& grad,
                     const DenseTensor& learning_rate,
                     const DenseTensor& moment1,
                     const DenseTensor& moment2,
                     const DenseTensor& beta1_pow,
                     const DenseTensor& beta2_pow,
139 140
                     const paddle::optional<DenseTensor>& master_param,
                     const paddle::optional<DenseTensor>& skip_update,
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
                     const Scalar& beta1,
                     const Scalar& beta2,
                     const Scalar& epsilon,
                     bool lazy_mode,
                     int64_t min_row_size_to_use_multithread,
                     bool multi_precision,
                     bool use_global_beta_pow,
                     DenseTensor* param_out,
                     DenseTensor* moment1_out,
                     DenseTensor* moment2_out,
                     DenseTensor* beta1_pow_out,
                     DenseTensor* beta2_pow_out,
                     DenseTensor* master_param_outs) {
  using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;

  VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
    paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
    skip_update_ = skip_update_vec[0];
  }
  // skip_update=true, just copy input to output, and TensorCopy will call
  // mutable_data
  if (skip_update_) {
    VLOG(4) << "Adam skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
176 177
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    return;
  }

  MPDType beta1_ = beta1.to<MPDType>();
  MPDType beta2_ = beta2.to<MPDType>();
  MPDType epsilon_ = epsilon.to<MPDType>();
  VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel()
          << "beta2_pow.numel() : " << beta2_pow.numel();
  VLOG(3) << "param.numel(): " << param.numel();
  PADDLE_ENFORCE_EQ(
      beta1_pow_out->numel(),
      1,
      errors::InvalidArgument("beta1 pow output size should be 1, but received "
                              "value is:%d.",
                              beta1_pow_out->numel()));

  PADDLE_ENFORCE_EQ(
      beta2_pow_out->numel(),
      1,
      errors::InvalidArgument("beta2 pow output size should be 1, but received "
                              "value is:%d.",
                              beta2_pow_out->numel()));

  const MPDType* master_in_data =
      multi_precision ? master_param->data<MPDType>() : nullptr;
  MPDType* master_out_data =
      multi_precision ? dev_ctx.template Alloc<MPDType>(master_param_outs)
                      : nullptr;

  // update param and moment
  int threads = 512;
  int blocks = (param.numel() + threads - 1) / threads;

  if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
    // Compute with betapow in REG
    AdamKernelREG<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
        beta1_,
        beta2_,
        epsilon_,
        *beta1_pow.data<MPDType>(),
        *beta2_pow.data<MPDType>(),
        moment1.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment1_out),
        moment2.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment2_out),
        learning_rate.data<MPDType>(),
        grad.data<T>(),
        param.data<T>(),
        dev_ctx.template Alloc<T>(param_out),
        master_in_data,
        master_out_data,
        param.numel());
    if (!use_global_beta_pow) {
      // Cpu update
      dev_ctx.template HostAlloc<MPDType>(beta1_pow_out)[0] =
          beta1_ * beta1_pow.data<MPDType>()[0];
      dev_ctx.template HostAlloc<MPDType>(beta2_pow_out)[0] =
          beta2_ * beta2_pow.data<MPDType>()[0];
    }
  } else {
    AdamKernelMEM<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
        beta1_,
        beta2_,
        epsilon_,
        beta1_pow.data<MPDType>(),
        beta2_pow.data<MPDType>(),
        moment1.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment1_out),
        moment2.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment2_out),
        learning_rate.data<MPDType>(),
        grad.data<T>(),
        param.data<T>(),
        dev_ctx.template Alloc<T>(param_out),
        master_in_data,
        master_out_data,
        param.numel());
    if (!use_global_beta_pow) {
      // Update with gpu
      UpdateBetaPow<MPDType><<<1, 32, 0, dev_ctx.stream()>>>(
          beta1_,
          beta2_,
          beta1_pow.data<MPDType>(),
          beta2_pow.data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(beta1_pow_out),
          dev_ctx.template Alloc<MPDType>(beta2_pow_out));
    }
  }
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
template <typename T, typename Context>
void MergedAdamKernel(
    const Context& dev_ctx,
    const std::vector<const DenseTensor*>& param,
    const std::vector<const DenseTensor*>& grad,
    const std::vector<const DenseTensor*>& learning_rate,
    const std::vector<const DenseTensor*>& moment1,
    const std::vector<const DenseTensor*>& moment2,
    const std::vector<const DenseTensor*>& beta1_pow,
    const std::vector<const DenseTensor*>& beta2_pow,
    const paddle::optional<std::vector<const DenseTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<DenseTensor*> param_out,
    std::vector<DenseTensor*> moment1_out,
    std::vector<DenseTensor*> moment2_out,
    std::vector<DenseTensor*> beta1_pow_out,
    std::vector<DenseTensor*> beta2_pow_out,
    std::vector<DenseTensor*> master_param_out) {
  using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;
  VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;
  MPDType beta1_ = beta1.to<MPDType>();
  MPDType beta2_ = beta2.to<MPDType>();
  MPDType epsilon_ = epsilon.to<MPDType>();

  size_t param_num = param.size();

  for (size_t idx = 0; idx < param_num; idx++) {
    const MPDType* master_in_data =
        multi_precision ? master_param.get()[idx]->data<MPDType>() : nullptr;
    MPDType* master_out_data =
        multi_precision ? dev_ctx.template Alloc<MPDType>(master_param_out[idx])
                        : nullptr;

    // update param and moment
    int threads = 512;
    int blocks = (param[idx]->numel() + threads - 1) / threads;

    if (beta1_pow[idx]->place() == CPUPlace() &&
        beta2_pow[idx]->place() == CPUPlace()) {
      // Compute with betapow in REG
      AdamKernelREG<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
          beta1_,
          beta2_,
          epsilon_,
          *beta1_pow[idx]->data<MPDType>(),
          *beta2_pow[idx]->data<MPDType>(),
          moment1[idx]->data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(moment1_out[idx]),
          moment2[idx]->data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(moment2_out[idx]),
          learning_rate[idx]->data<MPDType>(),
          grad[idx]->data<T>(),
          param[idx]->data<T>(),
          dev_ctx.template Alloc<T>(param_out[idx]),
          master_in_data,
          master_out_data,
          param[idx]->numel());
      if (!use_global_beta_pow) {
        // Cpu update
        dev_ctx.template HostAlloc<MPDType>(beta1_pow_out[idx])[0] =
            beta1_ * beta1_pow[idx]->data<MPDType>()[0];
        dev_ctx.template HostAlloc<MPDType>(beta2_pow_out[idx])[0] =
            beta2_ * beta2_pow[idx]->data<MPDType>()[0];
      }
    } else {
      AdamKernelMEM<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
          beta1_,
          beta2_,
          epsilon_,
          beta1_pow[idx]->data<MPDType>(),
          beta2_pow[idx]->data<MPDType>(),
          moment1[idx]->data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(moment1_out[idx]),
          moment2[idx]->data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(moment2_out[idx]),
          learning_rate[idx]->data<MPDType>(),
          grad[idx]->data<T>(),
          param[idx]->data<T>(),
          dev_ctx.template Alloc<T>(param_out[idx]),
          master_in_data,
          master_out_data,
          param[idx]->numel());
      if (!use_global_beta_pow) {
        // Update with gpu
        UpdateBetaPow<MPDType><<<1, 32, 0, dev_ctx.stream()>>>(
            beta1_,
            beta2_,
            beta1_pow[idx]->data<MPDType>(),
            beta2_pow[idx]->data<MPDType>(),
            dev_ctx.template Alloc<MPDType>(beta1_pow_out[idx]),
            dev_ctx.template Alloc<MPDType>(beta2_pow_out[idx]));
      }
    }
  }
}

368 369 370 371 372 373 374 375
}  // namespace phi

PD_REGISTER_KERNEL(adam,
                   GPU,
                   ALL_LAYOUT,
                   phi::AdamDenseKernel,
                   float,
                   double,
376 377 378 379 380 381
                   phi::dtype::float16) {
  // Skip beta1_pow, beta2_pow, skip_update data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);
}
382 383 384 385 386 387 388 389 390 391 392 393

PD_REGISTER_KERNEL(merged_adam,
                   GPU,
                   ALL_LAYOUT,
                   phi::MergedAdamKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  // Skip beta1_pow, beta2_pow data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
}