slice_op_xpu.cc 8.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
16
#include "paddle/fluid/operators/slice_op.h"
T
Thunderbrook 已提交
17 18 19 20
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
21
#include "xpu/refactor/math.h"
T
Thunderbrook 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class SliceXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto in = ctx.Input<framework::Tensor>("Input");
    auto out = ctx.Output<framework::Tensor>("Out");
    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto starts = ctx.Attr<std::vector<int>>("starts");
    auto ends = ctx.Attr<std::vector<int>>("ends");
    auto in_dims = in->dims();

    // prepare starts, ends on XPU
    int dim_value = 0, start = 0, end = 0;
    // If a negative value is passed for any of the start or end indices,
    // it represents number of elements before the end of that dimension.
    // If the value passed to start or end is larger than the n
    // (the number of elements in this dimension), it represents n.
    for (size_t i = 0; i < axes.size(); ++i) {
      dim_value = in_dims[axes[i]];
      start = starts[i];
      end = ends[i];
      start = start < 0 ? (start + dim_value) : start;
      end = end < 0 ? (end + dim_value) : end;
      start = std::max(start, 0);
      end = std::max(end, 0);
      end = std::min(end, dim_value);
      PADDLE_ENFORCE_GT(end, start, platform::errors::InvalidArgument(
                                        "end should greater than start"));
      starts[i] = start;
      ends[i] = end;
    }
    size_t shape_size = in_dims.size();
    // the slice XPU kernel require that the length of `start`, `end` must be
    // equal
    // to the dims size of input tensor, therefore, if shape_size > axes.size(),
    // the `starts_extension` and `ends_extension` is necessary.
    std::vector<int> starts_extension(shape_size, 0);
    std::vector<int> ends_extension(shape_size, 0);
    if (shape_size > axes.size()) {
      for (size_t i = 0; i < shape_size; ++i) {
        ends_extension[i] = in_dims[i];
      }
      for (size_t i = 0; i < axes.size(); ++i) {
        starts_extension[axes[i]] = starts[i];
        ends_extension[axes[i]] = ends[i];
      }
    } else {
      starts_extension = std::move(starts);
      ends_extension = std::move(ends);
    }

    // prepare shape on XPU
    std::vector<int> shape(shape_size, 0);
    for (size_t i = 0; i < shape_size; ++i) {
      shape[i] = in_dims[i];
    }

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto* in_data = in->data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
88 89
    int r = xpu::slice<T>(dev_ctx.x_context(), in_data, out_data, shape,
                          starts_extension, ends_extension);
T
Thunderbrook 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External("XPU slice kernel error!"));
  }
};

template <typename DeviceContext, typename T>
class SliceGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_in = ctx.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_in->mutable_data<T>(ctx.GetPlace());

    auto in_dims = d_in->dims();
    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto starts = ctx.Attr<std::vector<int>>("starts");
    auto ends = ctx.Attr<std::vector<int>>("ends");

    // prepare starts, ends on XPU
    int dim_value = 0, start = 0, end = 0;
    // If a negative value is passed for any of the start or end indices,
    // it represents number of elements before the end of that dimension.
    // If the value passed to start or end is larger than the n
    // (the number of elements in this dimension), it represents n.
    for (size_t i = 0; i < axes.size(); ++i) {
      dim_value = in_dims[axes[i]];
      start = starts[i];
      end = ends[i];
      start = start < 0 ? (start + dim_value) : start;
      end = end < 0 ? (end + dim_value) : end;
      start = std::max(start, 0);
      end = std::max(end, 0);
      end = std::min(end, dim_value);
      PADDLE_ENFORCE_GT(end, start, platform::errors::InvalidArgument(
                                        "end should greater than start"));
      starts[i] = start;
      ends[i] = end;
    }
    size_t shape_size = in_dims.size();
    // the slice XPU kernel require that the length of `start`, `end` must be
    // equal
    // to the dims size of input tensor, therefore, if shape_size > axes.size(),
    // the `starts_extension` and `ends_extension` is necessary.
    std::vector<int> starts_extension(shape_size, 0);
    std::vector<int> ends_extension(shape_size, 0);
    if (shape_size > axes.size()) {
      for (size_t i = 0; i < shape_size; ++i) {
        ends_extension[i] = in_dims[i];
      }
      for (size_t i = 0; i < axes.size(); ++i) {
        starts_extension[axes[i]] = starts[i];
        ends_extension[axes[i]] = ends[i];
      }
    }
    int* starts_device = nullptr;
    int* ends_device = nullptr;
    int* starts_host =
        shape_size > axes.size() ? starts_extension.data() : starts.data();
    int* ends_host =
        shape_size > axes.size() ? ends_extension.data() : ends.data();
150 151 152 153 154 155 156 157
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&starts_device),
                                 shape_size * sizeof(int)),
                      XPU_SUCCESS,
                      platform::errors::External("XPU has no enough memory"));
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&ends_device),
                                 shape_size * sizeof(int)),
                      XPU_SUCCESS,
                      platform::errors::External("XPU has no enough memory"));
T
Thunderbrook 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
                 starts_device, platform::CPUPlace(), starts_host,
                 shape_size * sizeof(int));
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
                 ends_device, platform::CPUPlace(), ends_host,
                 shape_size * sizeof(int));

    // prepare shape on XPU
    std::vector<int> shape(shape_size, 0);
    for (size_t i = 0; i < shape_size; ++i) {
      shape[i] = in_dims[i];
    }
    int* shape_device = nullptr;
171 172 173 174
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&shape_device),
                                 shape_size * sizeof(int)),
                      XPU_SUCCESS,
                      platform::errors::External("XPU has no enough memory"));
T
Thunderbrook 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
                 shape_device, platform::CPUPlace(), shape.data(),
                 shape_size * sizeof(int));

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    int r =
        xpu::slice_backward(dev_ctx.x_context(), shape_device, starts_device,
                            ends_device, shape_size, d_out->data<T>(),
                            d_in->data<T>(), d_in->numel(), d_out->numel());
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External("xpu slice kernel error"));
    dev_ctx.Wait();
    // free device data
    xpu_free(shape_device);
    xpu_free(starts_device);
    xpu_free(ends_device);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
200 201
    slice, ops::SliceXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::SliceXPUKernel<paddle::platform::XPUDeviceContext, int>);
T
Thunderbrook 已提交
202 203 204 205
REGISTER_OP_XPU_KERNEL(
    slice_grad,
    ops::SliceGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif