test_data_balance.py 7.6 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
import paddle.v2 as paddle
import numpy as np


class TestDataBalance(unittest.TestCase):
    def prepare_data(self):
        def fake_data_generator():
            for n in xrange(self.total_ins_num):
                yield np.ones((3, 4)) * n, n

        # Prepare data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(
                fake_data_generator, batch_size=self.batch_size)
            feeder = fluid.DataFeeder(
                feed_list=[
                    fluid.layers.data(
                        name='image', shape=[3, 4], dtype='float32'),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
                self.data_file_name, reader, feeder)

    def prepare_lod_data(self):
        def fake_data_generator():
            for n in xrange(1, self.total_ins_num + 1):
                d1 = (np.ones((n, 3)) * n).astype('float32')
                d2 = (np.array(n).reshape((1, 1))).astype('int32')
                yield d1, d2

        # Prepare lod data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            with fluid.recordio_writer.create_recordio_writer(
                    filename=self.lod_data_file_name) as writer:
                eof = False
                generator = fake_data_generator()
                while (not eof):
                    data_batch = [
                        np.array([]).reshape((0, 3)), np.array([]).reshape(
                            (0, 1))
                    ]
                    lod = [0]
                    for _ in xrange(self.batch_size):
                        try:
                            ins = generator.next()
                        except StopIteration:
                            eof = True
                            break
                        for i, d in enumerate(ins):
                            data_batch[i] = np.concatenate(
                                (data_batch[i], d), axis=0)
                        lod.append(lod[-1] + ins[0].shape[0])
                    if data_batch[0].shape[0] > 0:
                        for i, d in enumerate(data_batch):
                            t = fluid.LoDTensor()
                            t.set(data_batch[i], fluid.CPUPlace())
                            if i == 0:
                                t.set_lod([lod])
                            writer.append_tensor(t)
                        writer.complete_append_tensor()

    def setUp(self):
        self.use_cuda = fluid.core.is_compiled_with_cuda()
        self.data_file_name = './data_balance_test.recordio'
        self.lod_data_file_name = './data_balance_with_lod_test.recordio'
        self.total_ins_num = 50
        self.batch_size = 10
        self.prepare_data()
        self.prepare_lod_data()

    def main(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.data_file_name],
                shapes=[[-1, 3, 4], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            if self.use_cuda:
                data_reader = fluid.layers.double_buffer(data_reader)
            image, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)

            parallel_exe = fluid.ParallelExecutor(
                use_cuda=self.use_cuda, main_program=main_prog)

            if (parallel_exe.device_count > self.batch_size):
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [image.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    image_val, label_val = parallel_exe.run(fetch_list,
                                                            return_numpy=True)
121
                except fluid.core.EOFException:
F
fengjiayi 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
                    break
                ins_num = image_val.shape[0]
                broadcasted_label = np.ones(
                    (ins_num, 3, 4)) * label_val.reshape((ins_num, 1, 1))
                self.assertEqual(image_val.all(), broadcasted_label.all())
                for l in label_val:
                    self.assertFalse(data_appeared[l[0]])
                    data_appeared[l[0]] = True
            for i in data_appeared:
                self.assertTrue(i)

    def main_lod(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.lod_data_file_name],
                shapes=[[-1, 3], [-1, 1]],
                lod_levels=[1, 0],
                dtypes=['float32', 'int32'],
                thread_num=1)
            ins, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)

            parallel_exe = fluid.ParallelExecutor(
                use_cuda=self.use_cuda, main_program=main_prog)

            if (parallel_exe.device_count > self.batch_size):
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [ins.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    ins_tensor, label_tensor = parallel_exe.run(
                        fetch_list, return_numpy=False)
164
                except fluid.core.EOFException:
F
fengjiayi 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                    break

                ins_val = np.array(ins_tensor)
                label_val = np.array(label_tensor)
                ins_lod = ins_tensor.lod()[0]
                self.assertEqual(ins_val.shape[1], 3)
                self.assertEqual(label_val.shape[1], 1)
                self.assertEqual(len(ins_lod) - 1, label_val.shape[0])
                for i in range(0, len(ins_lod) - 1):
                    ins_elem = ins_val[ins_lod[i]:ins_lod[i + 1]][:]
                    label_elem = label_val[i][0]
                    self.assertEqual(ins_elem.all(), label_elem.all())
                    self.assertFalse(data_appeared[int(label_elem - 1)])
                    data_appeared[int(label_elem - 1)] = True

            for i in data_appeared:
                self.assertTrue(i)

    def test_all(self):
        self.main()
        self.main_lod()