convert_to_mixed_precision.cc 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

17
#include <string>
18 19 20 21
#include <unordered_set>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
22
#include "paddle/fluid/framework/framework.pb.h"
23 24 25
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
26
#include "paddle/fluid/framework/ir/node.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/tensor_meta.h"

using namespace paddle::framework;  // NOLINT

namespace paddle {
namespace inference {
namespace analysis {

namespace {

bool IsKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  bool res =
      IsKernelSupportPrecision(op_type, phi::Backend::GPU, data_type, layout);
  res |= IsKernelSupportPrecision(
      op_type, phi::Backend::GPUDNN, data_type, layout);
  return res;
}

// Just process special cases.
bool OutShouldNotConvert(ir::Node* var_node) {
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
// Get weight names which appear in multiple block (block 0 and block n).
std::unordered_set<std::string> GetMultiBlockPersistableNames(
    framework::ProgramDesc* program_desc) {
  std::unordered_set<std::string> special_weights;
  size_t block_size = program_desc->Size();

  std::unordered_set<std::string> block_0_weights;
  for (auto var : program_desc->Block(0).AllVars()) {
    if (var->Persistable()) block_0_weights.insert(var->Name());
  }

  for (size_t i = 1; i < block_size; ++i) {
    // std::cout << program_desc->MutableBlock(i)->Proto()->DebugString() <<
    // std::endl;;
    auto all_ops = program_desc->Block(i).AllOps();
    for (auto op : all_ops) {
      for (auto name : op->InputArgumentNames()) {
        if (block_0_weights.count(name)) special_weights.insert(name);
      }
    }
  }

  return special_weights;
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Just process special cases for weights conversion.
bool WeightsShouldNotConvert(ir::Node* var_node) {
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
    }
  }

146 147 148 149 150 151 152 153 154 155 156 157
  // If cur_op's next is condition_flow op, then cur op should be fp32. Note, we
  // now only convert to mixed in block 0.
  for (auto* op_node : op_nodes) {
    for (auto var : op_node->outputs) {
      for (auto next_op : var->outputs) {
        if (next_op->Op()->HasAttr("sub_block")) {
          return true;
        }
      }
    }
  }

158 159 160
  return false;
}

W
Wilber 已提交
161 162 163
inline bool IsFloatVarType(framework::proto::VarType::Type type) {
  if (type == framework::proto::VarType::FP16 ||
      type == framework::proto::VarType::FP32 ||
164
      type == framework::proto::VarType::BF16)
W
Wilber 已提交
165 166 167 168
    return true;
  return false;
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
void ConvertAllFp64ToFp32(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "in_dtype", static_cast<int>(framework::proto::VarType::FP32));
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "out_dtype", static_cast<int>(framework::proto::VarType::FP32));
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      if (in_node->IsCtrlVar()) continue;
      auto* in_var = in_node->Var();
      if (!in_var->Persistable() &&
          in_var->GetDataType() == framework::proto::VarType::FP64) {
        in_var->SetDataType(framework::proto::VarType::FP32);
      }
    }
  }
}

// Handle special ops which contains dtype attribute. e.g., fill_constant,
// assign_value.
void HandleSpecialOps(framework::OpDesc* op_desc) {
  if (op_desc->Type() == "fill_constant") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "assign_value") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "eye") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "fill_any_like") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  }
}

// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;

    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
  }
}

// If op's output var is condition flow op's input, then the op must be fp32
// precision.
bool NextOpIncludesConditionFlowOp(framework::ir::Node* cur_op_node) {
  auto cur_op_outs = cur_op_node->outputs;
  for (auto out_var : cur_op_outs) {
    for (auto next_op_node : out_var->outputs) {
      if (next_op_node->Op()->HasAttr("sub_block")) {
        return true;
      }
    }
  }
  return false;
}

void ConvertTensorDtype(framework::ProgramDesc* program_desc,
                        framework::ir::Graph* graph,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                        const std::unordered_set<std::string>& blacklist,
                        bool keep_io_types,
                        phi::Backend backend,
                        phi::DataType tensor_dtype) {
  framework::proto::VarType::Type to_type;
  if (tensor_dtype == phi::DataType::FLOAT16) {
    to_type = framework::proto::VarType::FP16;
  } else if (tensor_dtype == phi::DataType::BFLOAT16) {
    to_type = framework::proto::VarType::BF16;
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "mixed_precision currently not supported dtype %d, we now only support "
        "fp16 and bf16.",
        static_cast<int>(tensor_dtype)));
  }

295
  auto weight_name_in_multi_block = GetMultiBlockPersistableNames(program_desc);
296 297 298 299 300
  int num_low_precision = 0;
  int suffix = 0;
  framework::BlockDesc* block_desc{nullptr};
  std::vector<framework::ir::Node*> output_nodes;
  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map;
301 302
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    auto phi_op_type = phi::TransToPhiKernelName(op_type);
    // 1. set input dtype.
    if (op_type == "feed") {
      block_desc = op_node->Op()->Block();
      auto feed_var = op_node->outputs[0]->Var();
      if (!keep_io_types &&
          feed_var->GetDataType() == framework::proto::VarType::FP32) {
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
318 319
    } else if (op_type == "cast") {
      continue;
320 321 322 323 324 325
    }

    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
326 327
    else if (blacklist.count(phi_op_type) == 0 &&  // NOLINT
             !NextOpIncludesConditionFlowOp(op_node)) {
328 329
      bool support_precision =
          OpSupportPrecision(phi_op_type, backend, tensor_dtype, blacklist);
330 331 332 333 334 335 336 337 338
      VLOG(2) << "op_type " << op_type << ", phi_op_type " << phi_op_type
              << " support low precision " << support_precision << ", "
              << reinterpret_cast<void*>(op_node->Op()->Block());

      for (auto in_node : op_node->inputs) {
        if (weight_name_in_multi_block.count(in_node->Name()))
          support_precision = false;
      }

339
      if (support_precision) {
340
        HandleSpecialOps(op_node->Op());
341 342 343
        ++num_low_precision;
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
344
          if (in_node->IsCtrlVar()) continue;
345 346 347 348 349 350
          auto* in_var = in_node->Var();
          if (in_var->Persistable() &&
              in_var->GetDataType() == framework::proto::VarType::FP32) {
            if (WeightsShouldNotConvert(in_node)) continue;
            in_var->SetDataType(to_type);
          } else if (!in_var->Persistable() &&
W
Wilber 已提交
351
                     IsFloatVarType(in_var->GetDataType()) &&
352 353 354 355 356 357 358 359 360 361 362 363
                     in_var->GetDataType() != to_type) {
            AddCastOp(graph,
                      in_node,
                      op_node,
                      in_var->GetDataType(),
                      to_type,
                      &suffix,
                      block_desc,
                      &cast_map);
          }
        }
        for (auto* out_node : op_node->outputs) {
W
Wilber 已提交
364
          if (out_node->IsCtrlVar()) continue;
365 366 367 368 369 370 371 372 373
          auto* out_var = out_node->Var();
          if (out_var->GetDataType() == framework::proto::VarType::FP32) {
            if (OutShouldNotConvert(out_node)) continue;
            out_var->SetDataType(to_type);
          }
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
374
          if (in_node->IsCtrlVar()) continue;
375
          auto* in_var = in_node->Var();
W
Wilber 已提交
376
          if (!in_var->Persistable() && IsFloatVarType(in_var->GetDataType()) &&
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
              in_var->GetDataType() != framework::proto::VarType::FP32) {
            AddCastOp(graph,
                      in_node,
                      op_node,
                      in_var->GetDataType(),
                      framework::proto::VarType::FP32,
                      &suffix,
                      block_desc,
                      &cast_map);
          }
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
394 395
      auto ins = op_node->inputs;
      for (auto* in_node : ins) {
W
Wilber 已提交
396
        if (in_node->IsCtrlVar()) continue;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
                    framework::proto::VarType::FP32,
                    &suffix,
                    block_desc,
                    &cast_map);
        }
      }
    }
  }

  // 4. if output_op's dtype is not compatible to output dtype, then just insert
  // cast.
  for (auto* node : output_nodes) {
W
Wilber 已提交
415
    if (node->IsCtrlVar()) continue;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    auto var = node->Var();
    if (keep_io_types && var->GetDataType() == to_type) {
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
                node->outputs[0],
                to_type,
                framework::proto::VarType::FP32,
                &suffix,
                block_desc,
                &cast_map);
    } else if (!keep_io_types &&
               var->GetDataType() == framework::proto::VarType::FP32) {
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
                node->outputs[0],
                framework::proto::VarType::FP32,
                to_type,
                &suffix,
                block_desc,
                &cast_map);
    }
  }

  if (num_low_precision)
    LOG(INFO) << "---  detected " << num_low_precision << " low precision ops";
}
}  // namespace

bool OpSupportPrecision(const std::string& phi_op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
  bool support_precision = false;
  if (blacklist.count(phi_op_type) == 0) {
    if (backend == phi::Backend::GPU)
      support_precision = GpuKernelSupportPrecision(phi_op_type, precision);
    else
      support_precision =
          IsKernelSupportPrecision(phi_op_type, backend, precision);
  }
  return support_precision;
}

void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
    framework::proto::VarType::Type from_type,
    framework::proto::VarType::Type to_type,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
  next_op->Op()->RenameInput(node->Name(), map->at(node)->Name());
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

void ConvertToMixedPrecision(const std::string& model_file,
                             const std::string& params_file,
                             const std::string& mixed_model_file,
                             const std::string& mixed_params_file,
                             phi::DataType mixed_precision,
                             phi::Backend backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  paddle::CPUPlace place;
  framework::Executor executor(place);
  framework::Scope scope;
  auto program_desc =
      inference::Load(&executor, &scope, model_file, params_file);
  auto graph = std::unique_ptr<framework::ir::Graph>(
      new framework::ir::Graph(*program_desc));

527 528 529 530 531 532 533 534
  ConvertAllFp64ToFp32(graph.get());
  ConvertTensorDtype(program_desc.get(),
                     graph.get(),
                     black_list,
                     keep_io_types,
                     backend,
                     mixed_precision);
  FixCastAttr(graph.get());
535 536 537 538 539 540 541 542 543 544 545

  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*graph, &mixed_program_desc);

  auto parameters = scope.LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  auto serialize_params =
      [](framework::Scope* scope,
         const std::vector<std::string>& params) -> std::string {
    std::ostringstream os;
L
Leo Chen 已提交
546
    phi::CPUContext ctx;
547 548 549 550 551 552 553 554 555 556 557 558 559
    for (const auto& param : params) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope->FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
      auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
      framework::SerializeToStream(os, *tensor, ctx);
    }
    return os.str();
  };

  std::unordered_set<std::string> weights_should_be_fp32;
560
  for (auto* node : graph->Nodes()) {
W
Wilber 已提交
561
    if (!(node->IsVar() && !node->IsCtrlVar())) continue;
562 563 564 565 566 567 568 569 570 571 572 573 574
    if (node->Var()->GetType() ==
            paddle::framework::proto::VarType::SELECTED_ROWS ||
        node->Var()->GetType() ==
            paddle::framework::proto::VarType::LOD_TENSOR ||
        node->Var()->GetType() ==
            paddle::framework::proto::VarType::LOD_TENSOR_ARRAY ||
        node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS ||
        node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB) {
      if (node->Var()->Persistable() &&
          node->Var()->GetDataType() ==
              paddle::framework::proto::VarType::FP32) {
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
      }
    }
  }

  for (const auto& param_name : parameters) {
    auto* var = scope.FindLocalVar(param_name);
    if (var->IsType<framework::LoDTensor>() ||
        var->IsType<framework::Tensor>()) {
      auto* t = var->GetMutable<framework::LoDTensor>();
      framework::Tensor mixed_tensor;
      mixed_tensor.Resize(t->dims());
      auto* data = t->mutable_data<float>(platform::CPUPlace());

      if (mixed_precision == phi::DataType::FLOAT16 &&
          !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<float16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<float16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      } else if (mixed_precision == phi::DataType::BFLOAT16 &&
                 !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<bfloat16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<bfloat16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      }
    }
  }

  auto StrToBinary = [](const std::string& path, const std::string& str) {
    std::ofstream file(path.c_str(), std::ios::binary);
    file.write(str.c_str(), str.size());
    file.close();
  };
  StrToBinary(mixed_model_file,
              mixed_program_desc.Proto()->SerializeAsString());
  StrToBinary(mixed_params_file, serialize_params(&scope, parameters));
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle