meshgrid_op.cc 5.4 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/meshgrid_op.h"

#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class MeshgridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GE(
        ctx->Inputs("X").size(), 1UL,
        platform::errors::InvalidArgument("Input(X) should not be empty."));
    PADDLE_ENFORCE_GE(
        ctx->Outputs("Out").size(), 1UL,
        platform::errors::InvalidArgument("Output(Out) should not be empty."));

    auto inputs_dims = ctx->GetInputsDim("X");
    const size_t inputs_num = inputs_dims.size();
    auto outs_names = ctx->Outputs("Out");
    const size_t outputs_num = outs_names.size();

    auto out_shape = std::vector<int>(inputs_num);

    for (size_t i = 0; i < inputs_num; i++) {
      out_shape[i] = inputs_dims[i][0];
    }
    auto out_dims = framework::make_ddim(std::vector<int>(out_shape));
    std::vector<framework::DDim> outs_dims(outputs_num, out_dims);
    ctx->SetOutputsDim("Out", outs_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto inputs = ctx.MultiInput<Tensor>("X");
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
    for (auto* input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Meshgrid OP are Empty!"));
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class MeshgridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor, default Tensor<float>).").AsDuplicable();
    AddOutput("Out", "(Tensor, default Tensor<float>.)").AsDuplicable();

    AddComment(R"DOC(
Meshgrid Operator.
Take: N tensors, each of which can be either scalr or 1-dimensional vector, and create
N-dimensional grids.

Args:
  tensors (list of tensor): if the input k tensors has (N1,), (N2,),..., (Nk,), then 
  the output tensors are all of size (N1, N2, ...., Nk).

Example::
>>> x = fluid.data(name='x', shape=[10], dtype='float64')
>>> y = fluid.data(name='y', shape=[20], dtype='float64')
>>> grid_x, grid_y = fluid.layers.meshgrid([x, y])
>>> grid_x.shape
(10,20)
>>> grid_y.shape
(10,20)
)DOC");
  }
};

class MeshgridGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Out")).size(), 1,
                      platform::errors::InvalidArgument(
                          "Number of Inputs(Out@Grad) must be larger than 1"));
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class MeshgridGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("meshgrid_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(meshgrid, ops::MeshgridOp, ops::MeshgridOpMaker,
                  ops::MeshgridGradOpMaker<paddle::framework::OpDesc>,
                  ops::MeshgridGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(meshgrid_grad, ops::MeshgridGradOp);
REGISTER_OP_CPU_KERNEL(
    meshgrid, ops::MeshgridKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeshgridKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int64_t>);

REGISTER_OP_CPU_KERNEL(
    meshgrid_grad,
    ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, double>);