test_if_else_op.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid.layers as layers
19
from paddle.fluid.framework import Program, program_guard
20 21 22
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core
23
import paddle.fluid as fluid
24 25 26 27
from paddle.fluid.layers.control_flow import split_lod_tensor
from paddle.fluid.layers.control_flow import merge_lod_tensor
from paddle.fluid.layers.control_flow import ConditionalBlock

Y
Yu Yang 已提交
28 29 30 31 32
import unittest
import numpy as np


class TestMNISTIfElseOp(unittest.TestCase):
33 34
    # FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
    def not_test_raw_api(self):
35 36 37 38
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
39

40
            label = layers.data(name='y', shape=[1], dtype='int64')
Y
Yu Yang 已提交
41

42
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
43
            cond = layers.less_than(x=label, y=limit)
44
            true_image, false_image = split_lod_tensor(input=image, mask=cond)
Y
Yu Yang 已提交
45

46
            true_out = layers.create_tensor(dtype='float32')
47
            true_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
48

49 50 51 52
            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)
Y
Yu Yang 已提交
53

54
            false_out = layers.create_tensor(dtype='float32')
55
            false_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
56

57 58 59 60
            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)
Y
Yu Yang 已提交
61

62
            prob = merge_lod_tensor(
63 64
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
Y
Yu Yang 已提交
65
            avg_loss = layers.mean(loss)
Y
Yu Yang 已提交
66

67 68
            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
69 70 71 72

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
73
            batch_size=10)
Y
Yu Yang 已提交
74 75 76 77

        place = core.CPUPlace()
        exe = Executor(place)

78
        exe.run(startup_prog)
Y
Yu Yang 已提交
79 80 81
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
82 83
                x_data = np.array([x[0] for x in data]).astype("float32")
                y_data = np.array([x[1] for x in data]).astype("int64")
Y
Yu Yang 已提交
84 85
                y_data = np.expand_dims(y_data, axis=1)

86
                outs = exe.run(prog,
D
dzhwinter 已提交
87 88 89
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
90
                print(outs[0])
Y
Yu Yang 已提交
91 92 93 94
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)

95 96
    # FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
    def not_test_ifelse(self):
97 98 99 100 101 102 103
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

104
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
Y
Yu Yang 已提交
122
            avg_loss = layers.mean(loss)
123 124 125

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

134
        exe.run(startup_prog)
Y
Yu Yang 已提交
135 136 137
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
138 139
                x_data = np.array([x[0] for x in data]).astype("float32")
                y_data = np.array([x[1] for x in data]).astype("int64")
D
dzhwinter 已提交
140
                y_data = y_data.reshape((y_data.shape[0], 1))
Y
Yu Yang 已提交
141

142
                outs = exe.run(prog,
D
dzhwinter 已提交
143 144 145
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
146
                print(outs[0])
Y
Yu Yang 已提交
147 148 149 150 151
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)


152 153 154 155 156 157
class TestIfElse(unittest.TestCase):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 0.5
        self.data = np.random.rand(25, 1).astype(np.float32)

158 159 160 161 162 163 164
    def numpy_cal(self):
        s1 = self.data[np.where(self.data < self.cond_value)]
        res = np.sum(np.exp(s1))
        s2 = self.data[np.where(self.data >= self.cond_value)]
        res += np.sum(np.tanh(s2))
        return res

165 166 167 168 169 170 171 172 173 174 175 176 177
    def compare_ifelse_op_and_numpy(self, place):
        self.set_test_case()

        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            src = layers.data(name='data', shape=[1], dtype='float32')
            cond = layers.fill_constant(
                [1], dtype='float32', value=self.cond_value)
            ifcond = layers.less_than(x=src, y=cond)
            ie = layers.IfElse(ifcond)
            with ie.true_block():
                true_target = ie.input(src)
178
                true_target = fluid.layers.exp(true_target)
179 180 181 182
                ie.output(true_target)

            with ie.false_block():
                false_target = ie.input(src)
183
                false_target = fluid.layers.tanh(false_target)
184 185 186 187 188 189 190 191 192 193
                ie.output(false_target)
            if_out = ie()
            out = layers.reduce_sum(if_out)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            fetch_list = [out]
            o1, = exe.run(fluid.default_main_program(),
                          feed={'data': self.data},
                          fetch_list=[out])
194 195
            o2 = self.numpy_cal()

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            self.assertTrue(
                np.allclose(
                    o1, o2, atol=1e-8),
                "IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))

    def test_cpu(self):
        self.compare_ifelse_op_and_numpy(fluid.CPUPlace())

    def test_cuda(self):
        if not core.is_compiled_with_cuda():
            return
        self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))


class TestIfElseTrueBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 10.
        self.data = np.random.rand(25, 1).astype(np.float32)


class TestIfElseFalseBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = -10.
        self.data = np.random.rand(25, 1).astype(np.float32)


Y
Yu Yang 已提交
224
if __name__ == '__main__':
225
    unittest.main()