distributed_fused_lamb_op.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/optimizers/distributed_fused_lamb_op.h"

namespace paddle {
namespace operators {

class DistributedFusedLambOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {}

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto dtype = framework::proto::VarType::FP32;  // dtype is not important
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
36
    return expected_kernel_type;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  }
};

class DistributedFusedLambOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Param", "The initial parameter list.").AsDuplicable();
    AddInput("Grad", "The initial gradient list.").AsDuplicable();

    AddInput("FP32FusedParam",
             "The fp32 fused param and fp16 fused master weight tensor. Its "
             "shape is [M1+M2], where M1 is the fp32 fused parameter size and "
             "M2 is the fp16 fused master weight parameter size. Note that M1 "
             "and M2 should be exactly divided by N (guaranteed by extra "
             "padding 0), where N is the world size.")
        .AsDispensable();
    AddInput("FP32FusedGrad", "The fp32 fused grad tensor. Its shape is [M1].")
        .AsDispensable();
    AddInput("FP16FusedParam",
             "The fp16 fused param tensor. Its shape is [M2].")
        .AsDispensable();
    AddInput("FP16FusedGrad", "The fp16 fused grad tensor. Its shape is [M2].")
        .AsDispensable();

    AddInput("Moment1",
             "The sharded fp32 moment1 tensor. Its shape is [(M1+M2)/N].");
    AddInput("Moment2",
             "The sharded fp32 moment2 tensor. Its shape is [(M1+M2)/N].");
    AddInput("Beta1Pow",
             "The fp32 beta1 power accumulator tensor. Its shape is [1].");
    AddInput("Beta2Pow",
             "The fp32 beta2 power accumulator tensor. Its shape is [1].");
    AddInput(
        "FusedParamOffsets",
        "The numel offset of each parameter inside the FP32FusedParam. Its "
        "shape is [param_num + 1]. It is like [0, n_0, n_0 + n_1, n_0 + n_1 "
73 74 75 76 77 78 79 80 81
        "+ n_2, ...]. It should be in CPUPlace.");
    AddInput(
        "FP32ShardFusedParamOffsets",
        "The sharded numel offset of each parameter in the local rank. "
        "Its shape is [fp32_local_param_num + 1]. It should be in CPUPlace.");
    AddInput(
        "FP16ShardFusedParamOffsets",
        "The sharded numel offset of each parameter in the local rank. "
        "Its shape is [fp16_local_param_num + 1]. It should be in CPUPlace.");
82 83
    AddInput("ParamInfo",
             "The param info. It should be in CPUPlace, and its shape is [6]"
84
             "CPUPlace, and its shape is [8]. It is "
85
             "[fp32_shard_param_start_idx, fp32_local_param_num, "
86 87 88 89 90 91 92 93
             "fp32_global_param_num, fp32_weight_decay_end_idx, "
             "fp16_shard_param_start_idx, "
             "fp16_local_param_num, fp16_global_param_num, "
             "fp16_weight_decay_end_idx].");
    AddInput("ParamOrder",
             "The reordered parameter order. Inside this op, "
             "the parameter would be reordered by data type and weight decay "
             "value.");
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    AddInput("LearningRate",
             "The fp32 learning rate tensor. Its shape is [1].");
    AddInput("GlobalScale", "The fp32 global scale tensor. Its shape is [1].");

    AddOutput("FP32FusedParamOut", "The updated FP32FusedParam.")
        .AsDispensable();
    AddOutput("FP16FusedParamOut", "The updated FP16FusedParam.")
        .AsDispensable();

    AddOutput("Moment1Out", "The updated Moment1.");
    AddOutput("Moment2Out", "The updated Moment2.");
    AddOutput("Beta1PowOut", "The updated Beta1Pow.");
    AddOutput("Beta2PowOut", "The updated Beta2Pow.");

    AddOutput("ParamOut", "The updated output parameter tensor list.")
        .AsDuplicable();

    AddOutput("FoundInf", "Whether there is NaN/Inf");

    AddAttr<float>("beta1", "The initial Beta1Pow value.");
    AddAttr<float>("beta2", "The initial Beta2Pow value.");
    AddAttr<float>("epsilon",
                   "The epsilon value to maintain numeric stability.");
    AddAttr<float>(
        "max_global_grad_norm",
        "The maximum global gradient l2-norm value for clipping. If "
        "max_global_grad_norm <= 0, no clipping would be performed.");
122
    AddAttr<float>("weight_decay", "The weight decay value.");
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    AddAttr<bool>("clip_after_allreduce",
                  "Whether to clip before allreduce, only valid when the "
                  "world size is larger than 1.");
    AddAttr<bool>(
        "use_master_param_norm",
        "Whether to use master parameter to calculate "
        "the L2-Norm. If it is true, it would be more accurate but be more "
        "NCCL communication data. If it is false, it would be less accurate "
        "and be less NCCL communication data.")
        .SetDefault(true);
    AddAttr<bool>("is_grad_scaled_by_nranks",
                  "Whether the input gradient has been scaled by nranks.")
        .SetDefault(true);
    AddAttr<int>("ring_id", "The ring id of the NCCL communicator.")
        .SetDefault(0);
    AddComment("The DistributedFusedLamb optimizer.");
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(distributed_fused_lamb,
                             ops::DistributedFusedLambOp,
                             ops::DistributedFusedLambOpMaker);

REGISTER_OP_CPU_KERNEL(
    distributed_fused_lamb,
    ops::DistributedFusedLambOpKernel<plat::CPUDeviceContext, float>);