elementwise_add_op_xpu.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"

#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseAddXPUKernel : public framework::OpKernel<T> {
 public:
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  void Compute(const framework::ExecutionContext& ctx) const override {
    // XPUElementwise<T>(ctx, xpu::add<T>);
    // ToDo(QingshuChen): update this optimization to elementwise_xpu.h
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_NE(x_var, nullptr, platform::errors::InvalidArgument(
                                          "Cannot get input Variable X"));
    PADDLE_ENFORCE_EQ(
        x_var->IsType<framework::LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "XPU only support LoDTensor, Input(X) is not LoDTensor"));

    auto x = x_var->Get<framework::LoDTensor>();
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    auto x_dims = x.dims();
    auto y_dims = y->dims();
    int max_dim = std::max(x_dims.size(), y_dims.size());
    int axis = ctx.Attr<int>("axis");
    axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);

    PADDLE_ENFORCE_GE(
        axis, 0,
        platform::errors::InvalidArgument(
            "Axis should be great than or equal to 0, but received axis is %d.",
            axis));
    PADDLE_ENFORCE_LT(
        axis, max_dim,
        platform::errors::InvalidArgument(
            "Axis should be less than %d, but received axis is %d.", max_dim,
            axis));
    std::vector<int> x_dims_vec(max_dim, 1);
    std::vector<int> y_dims_vec(max_dim, 1);
    if (x_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        x_dims_vec[i] = x_dims[i];
      }
    } else {
      for (int i = 0; i < x_dims.size(); i++) {
        x_dims_vec[i + axis] = x_dims[i];
      }
    }
    if (y_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        y_dims_vec[i] = y_dims[i];
      }
    } else {
      for (int i = 0; i < y_dims.size(); i++) {
        y_dims_vec[i + axis] = y_dims[i];
      }
    }
    const T* x_data = x.data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->data<T>();

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::XPUDeviceContext>();
    int ret = xpu::SUCCESS;
    ret = xpu::broadcast_add<T>(dev_ctx.x_context(), x_data, y_data, z_data,
                                x_dims_vec, y_dims_vec);
    PADDLE_ENFORCE_EQ(
        ret, xpu::SUCCESS,
        platform::errors::External(
            "XPU kernel Elementwise occur error in XPUElementwise error code ",
            ret, XPUAPIErrorMsg[ret]));
94 95 96 97 98 99
  }
};

template <typename DeviceContext, typename T>
class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
 public:
100
  void Compute(const framework::ExecutionContext& ctx) const override {
101
    ElemwiseGradKernel<T>::Compute(ctx);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    // XPUElementwiseGrad<T>(ctx, xpu::add_grad<T>, false);
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dz = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
    const framework::DDim& x_dims = x->dims();
    const framework::DDim& y_dims = y->dims();
    int max_dim = std::max(x_dims.size(), y_dims.size());
    axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
    PADDLE_ENFORCE_GE(
        axis, 0,
        platform::errors::InvalidArgument(
            "Axis should be great than or equal to 0, but received axis is %d.",
            axis));
    PADDLE_ENFORCE_LT(
        axis, max_dim,
        platform::errors::InvalidArgument(
            "Axis should be less than %d, but received axis is %d.", max_dim,
            axis));
    std::vector<int> x_dims_vec(max_dim, 1);
    std::vector<int> y_dims_vec(max_dim, 1);
    if (x_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        x_dims_vec[i] = x_dims[i];
      }
    } else {
      for (int i = 0; i < x_dims.size(); i++) {
        x_dims_vec[i + axis] = x_dims[i];
      }
    }
    if (y_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        y_dims_vec[i] = y_dims[i];
      }
    } else {
      for (int i = 0; i < y_dims.size(); i++) {
        y_dims_vec[i + axis] = y_dims[i];
      }
    }

144
    const T* dz_data = dz->data<T>();
145 146 147 148 149 150 151 152 153 154 155
    T* dx_data = nullptr;
    T* dy_data = nullptr;
    if (dx) {
      dx_data = dx->mutable_data<T>(ctx.GetPlace());
    }
    if (dy) {
      dy_data = dy->mutable_data<T>(ctx.GetPlace());
    }

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::XPUDeviceContext>();
156 157 158
    int ret = xpu::broadcast_add_grad<T>(dev_ctx.x_context(), dz_data, dz_data,
                                         dz_data, dz_data, dy_data, dx_data,
                                         x_dims_vec, y_dims_vec);
159 160 161 162 163
    PADDLE_ENFORCE_EQ(
        ret, xpu::SUCCESS,
        platform::errors::External(
            "XPU kernel Elementwise occur error in XPUElementwise error code ",
            ret, XPUAPIErrorMsg[ret]));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
    elementwise_add,
    ops::ElementwiseAddXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(elementwise_add_grad,
                       ops::ElementwiseAddGradXPUKernel<
                           paddle::platform::XPUDeviceContext, float>);
#endif