analyzer_lac_tester.cc 9.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

T
tensor-tang 已提交
15 16
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/inference/analysis/ut_helper.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/inference/api/analysis_predictor.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/inference/api/helper.h"
21
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25 26 27 28 29
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
30

T
tensor-tang 已提交
31 32 33
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
34

T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
106

T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115 116 117 118
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
119

T
tensor-tang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
L
luotao1 已提交
145
  PrintTime(batch_size, repeat, 1, 0, sum / repeat);
T
tensor-tang 已提交
146
}
T
tensor-tang 已提交
147

T
tensor-tang 已提交
148 149 150 151
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
152

T
tensor-tang 已提交
153 154
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
155 156
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
T
tensor-tang 已提交
157 158 159 160 161
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
162
  std::vector<PaddleTensor> input_slots, outputs_slots;
T
tensor-tang 已提交
163 164
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
165 166
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
T
tensor-tang 已提交
167 168 169 170 171 172
    AnalysisConfig cfg;
    cfg.model_dir = model_path;
    cfg.use_gpu = false;
    cfg.device = 0;
    cfg.specify_input_name = true;
    cfg.enable_ir_optim = true;
T
tensor-tang 已提交
173
    predictor =
T
tensor-tang 已提交
174
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
175 176 177 178
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
T
tensor-tang 已提交
179 180 181 182
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
T
tensor-tang 已提交
183 184
  if (test_all_data) {
    double sum = 0;
T
tensor-tang 已提交
185
    LOG(INFO) << "Total number of samples: " << data.datasets.size();
T
tensor-tang 已提交
186 187 188 189 190 191 192 193
    for (int i = 0; i < repeat; i++) {
      for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
        GetOneBatch(&input_slots, &data, batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs_slots);
        sum += timer.toc();
      }
    }
T
tensor-tang 已提交
194 195 196
    PrintTime(batch_size, repeat, 1, 0, sum / repeat);
    LOG(INFO) << "Average latency of each sample: "
              << sum / repeat / data.datasets.size() << " ms";
T
tensor-tang 已提交
197 198
    return;
  }
T
tensor-tang 已提交
199 200 201 202
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
L
luotao1 已提交
203
  PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
T
tensor-tang 已提交
204 205

  // check result
T
tensor-tang 已提交
206 207 208 209 210 211 212 213 214 215 216
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
217 218

  if (use_analysis) {
T
tensor-tang 已提交
219 220 221
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
222
    std::vector<PaddleTensor> ref_outputs_slots;
T
tensor-tang 已提交
223
    ref_predictor->Run(input_slots, &ref_outputs_slots);
T
tensor-tang 已提交
224 225 226 227 228 229 230 231 232 233
    EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], pdata[i]);
    }
T
tensor-tang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
252 253 254 255
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
    EXPECT_EQ(num_ops, 11);
T
tensor-tang 已提交
256
  }
T
tensor-tang 已提交
257
}
T
tensor-tang 已提交
258

T
tensor-tang 已提交
259 260 261 262 263
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
264 265 266 267 268 269 270

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
271 272 273
}  // namespace analysis
}  // namespace inference
}  // namespace paddle