pybind.cc 11.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/pybind/tensor_py.h"
27
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
28 29 30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

32 33
namespace py = pybind11;

34
USE_OP(add);
35
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
36
USE_OP(sgd);
Q
qijun 已提交
37
USE_OP(mul);
L
liaogang 已提交
38
USE_OP(mean);
Q
qijun 已提交
39 40 41
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
42
USE_OP(fill_zeros_like);
43
USE_NO_KERNEL_OP(recurrent);
44
USE_OP(gaussian_random);
Y
Yu Yang 已提交
45
USE_OP(uniform_random);
46
USE_OP(lookup_table);
Y
Yu Yang 已提交
47
USE_OP(scale);
48
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
49
USE_OP(minus);
X
Xinghai Sun 已提交
50
USE_OP(cos_sim);
Z
zchen0211 已提交
51
USE_CPU_ONLY_OP(gather);
Z
zchen0211 已提交
52
USE_CPU_ONLY_OP(scatter);
53
USE_OP(squared_l2_distance);
54

55 56
namespace paddle {
namespace framework {
D
dongzhihong 已提交
57 58

using Tensor = framework::Tensor;
59 60
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
61

62 63 64 65 66
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
67 68 69 70 71 72 73 74
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

75
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
76
  py::module m("core", "C++ core of PaddlePaddle");
77

78 79 80
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
81
      .def("get_dims",
82
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
83
      .def("set_dims",
Q
qijun 已提交
84
           [](Tensor &self, const std::vector<int64_t> &dim) {
85
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
86 87
           })
      .def("alloc_float",
Y
Yu Yang 已提交
88
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
89
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
90
           })
Q
qijun 已提交
91
      .def("alloc_float",
Y
Yu Yang 已提交
92
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
93
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_int",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_int",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<int>(place);
Q
qijun 已提交
102
           })
Y
Yu Yang 已提交
103 104
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
105
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
106 107
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
108
#endif
109
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
110
      .def("set_float_element",
111
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
112
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
113 114
             self.data<float>()[offset] = f;
           })
115
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
116
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
117 118
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
119

120
  py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
D
dangqingqing 已提交
121

122
The tensor and LoD info should be created before creating the LoDTensor, then
D
dangqingqing 已提交
123 124 125 126
call the set_tensor and set_lod functions to set them.

)DOC")
      .def("set_tensor",
127
           [](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
D
dangqingqing 已提交
128
      .def("set_lod",
129 130
           [](LoDTensor &self, std::vector<std::vector<size_t>> &lod) {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
131
             self.set_lod(lod);
132 133 134 135 136 137
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
138
           })
139 140
      .def("tensor",
           [](LoDTensor &self) -> Tensor & { return self.tensor(); },
D
dangqingqing 已提交
141
           py::return_value_policy::reference)
142 143
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
144
        return self.lod();
145 146 147 148 149 150 151 152 153 154 155 156 157 158
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
159 160
      });

161
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
162 163 164

All parameter, weight, gradient are variables in Paddle.
)DOC")
165
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
166
      .def("set_int",
167 168
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
169
      .def("get_tensor",
170
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
171
           py::return_value_policy::reference)
D
dangqingqing 已提交
172
      .def("get_lod_tensor",
173 174
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
175 176
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
177
      .def("get_net",
D
dongzhihong 已提交
178 179
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
180
           },
Y
Yu Yang 已提交
181
           py::return_value_policy::reference);
182

183
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
184
      .def("new_var",
185
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
186 187
             return self.NewVar(name);
           },
188
           py::return_value_policy::reference)
189
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
190
      .def(py::init<>())
191 192
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
193
           py::return_value_policy::reference)
194
      .def("drop_kids", &Scope::DropKids);
195

Y
Yu Yang 已提交
196 197
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
198 199
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
200 201 202 203

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
204
      std::string str;
Y
Yu Yang 已提交
205
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
206
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
207 208
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
209 210
    return ret_values;
  });
211 212 213
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
214 215
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
216
  // clang-format off
Y
Yu Yang 已提交
217
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
218 219
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
220
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
221 222 223 224 225
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
226
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
227
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
228
#else
Q
qijun 已提交
229
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
230
#endif
Q
qijun 已提交
231
                  });
Q
qijun 已提交
232
  // clang-format on
Q
qijun 已提交
233

234 235 236
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
237

238 239 240
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
241

Y
Yu Yang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
272

Y
Yu Yang 已提交
273 274 275 276 277 278 279
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
280 281 282 283
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
284 285 286 287
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
288

Y
Yan Chunwei 已提交
289
  // recurrent_op
Y
Yu Yang 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
303 304 305
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
306

307 308
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
309 310
  m.def("is_compile_gpu", IsCompileGPU);

311
  return m.ptr();
L
Luo Tao 已提交
312
}
313 314
}  // namespace framework
}  // namespace paddle