math_function_test.cu 16.9 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Q
qijun 已提交
14
#include "gtest/gtest.h"
Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
16
#include "paddle/fluid/platform/device_context.h"
Q
qijun 已提交
17

18 19 20 21 22 23 24 25
void fill_fp16_data(paddle::platform::float16* in_ptr, size_t size,
                    const std::vector<float>& data) {
  PADDLE_ENFORCE_EQ(size, data.size());
  for (size_t i = 0; i < data.size(); ++i) {
    in_ptr[i] = paddle::platform::float16(data[i]);
  }
}

Y
Yu Yang 已提交
26 27 28 29 30 31 32
template <typename T>
inline paddle::operators::math::BlasT<paddle::platform::CUDADeviceContext, T>
GetBlas(const paddle::platform::CUDADeviceContext& context) {
  return paddle::operators::math::GetBlas<paddle::platform::CUDADeviceContext,
                                          T>(context);
}

33
TEST(math_function, notrans_mul_trans_fp32) {
34 35 36 37 38
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;
39

40 41 42
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
43 44

  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
45 46 47
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

48 49
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input1, gpu_place, &input2_gpu);
Q
qijun 已提交
50

51
  out_gpu.mutable_data<float>({2, 2}, gpu_place);
Y
Yu Yang 已提交
52 53
  GetBlas<float>(context).MatMul(input1_gpu, false, input2_gpu, true, 1,
                                 &out_gpu, 0);
Q
qijun 已提交
54

55
  paddle::framework::TensorCopySync(out_gpu, cpu_place, &out);
Q
qijun 已提交
56 57 58 59 60 61 62 63 64

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
}

65
TEST(math_function, notrans_mul_trans_fp16) {
66 67 68 69 70
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;
71

72 73 74
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
75

K
Kexin Zhao 已提交
76 77 78 79 80
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

81 82
  paddle::platform::float16* input1_ptr =
      input1.mutable_data<paddle::platform::float16>({2, 3}, cpu_place);
83 84
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

85 86
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input1, gpu_place, &input2_gpu);
87

88
  out_gpu.mutable_data<paddle::platform::float16>({2, 2}, gpu_place);
89

Y
Yu Yang 已提交
90 91 92
  GetBlas<paddle::platform::float16>(context).MatMul(
      input1_gpu, false, input2_gpu, true, paddle::platform::float16(1),
      &out_gpu, paddle::platform::float16(0));
93

94
  paddle::framework::TensorCopySync(out_gpu, cpu_place, &out);
95

96
  paddle::platform::float16* out_ptr = out.data<paddle::platform::float16>();
97 98 99 100 101 102 103 104
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 5);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 50);
}

TEST(math_function, trans_mul_notrans_fp32) {
105 106 107 108 109
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;
110

111 112 113
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
Q
qijun 已提交
114

115
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
116 117 118
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

119 120
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input1, gpu_place, &input2_gpu);
Q
qijun 已提交
121

122
  out_gpu.mutable_data<float>({3, 3}, gpu_place);
Q
qijun 已提交
123

Y
Yu Yang 已提交
124 125
  GetBlas<float>(context).MatMul(input1_gpu, true, input2_gpu, false, 1,
                                 &out_gpu, 0);
Q
qijun 已提交
126

127
  paddle::framework::TensorCopySync(out_gpu, cpu_place, &out);
Q
qijun 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
}

142
TEST(math_function, trans_mul_notrans_fp16) {
143 144 145 146 147
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;
148

149 150 151
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
152

K
Kexin Zhao 已提交
153 154 155 156 157
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

158 159
  paddle::platform::float16* input1_ptr =
      input1.mutable_data<paddle::platform::float16>({2, 3}, cpu_place);
160 161
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

162 163
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input1, gpu_place, &input2_gpu);
164

165
  out_gpu.mutable_data<paddle::platform::float16>({3, 3}, gpu_place);
166

Y
Yu Yang 已提交
167 168 169
  GetBlas<paddle::platform::float16>(context).MatMul(
      input1_gpu, true, input2_gpu, false, paddle::platform::float16(1),
      &out_gpu, paddle::platform::float16(0));
170

171
  paddle::framework::TensorCopySync(out_gpu, cpu_place, &out);
172

173
  paddle::platform::float16* out_ptr = out.data<paddle::platform::float16>();
174 175 176 177 178 179 180 181 182 183 184 185 186
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 9);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[4]), 17);
  EXPECT_EQ(static_cast<float>(out_ptr[5]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[6]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[7]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[8]), 29);
}

TEST(math_function, gemm_notrans_cublas_fp32) {
187 188 189 190 191 192
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;
193

194 195 196
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
Q
qijun 已提交
197 198 199 200

  int m = 2;
  int n = 3;
  int k = 3;
201
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
202 203
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
204
  float* input2_ptr = input2.mutable_data<float>({3, 4}, cpu_place);
Q
qijun 已提交
205 206
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
207
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
208 209 210
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

211 212 213
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input2, gpu_place, &input2_gpu);
  paddle::framework::TensorCopySync(input3, gpu_place, &input3_gpu);
Q
qijun 已提交
214 215
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
216
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
217

Y
Yu Yang 已提交
218 219
  GetBlas<float>(context).GEMM(false, false, m, n, k, 1, a, 3, b + 1, 4, 1,
                               c + 1, 4);
Q
qijun 已提交
220

221
  paddle::framework::TensorCopySync(input3_gpu, cpu_place, &input3);
Q
qijun 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

240
TEST(math_function, gemm_notrans_cublas_fp16) {
241 242 243 244 245 246
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;
247

248 249 250
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
251

K
Kexin Zhao 已提交
252 253 254 255 256
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

257 258 259
  int m = 2;
  int n = 3;
  int k = 3;
260 261
  paddle::platform::float16* input1_ptr =
      input1.mutable_data<paddle::platform::float16>({2, 3}, cpu_place);
262
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
263 264
  paddle::platform::float16* input2_ptr =
      input2.mutable_data<paddle::platform::float16>({3, 4}, cpu_place);
265 266
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
267 268
  paddle::platform::float16* input3_ptr =
      input3.mutable_data<paddle::platform::float16>({2, 4}, cpu_place);
269 270
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

271 272 273 274 275 276 277
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input2, gpu_place, &input2_gpu);
  paddle::framework::TensorCopySync(input3, gpu_place, &input3_gpu);
  paddle::platform::float16* a = input1_gpu.data<paddle::platform::float16>();
  paddle::platform::float16* b = input2_gpu.data<paddle::platform::float16>();
  paddle::platform::float16* c =
      input3_gpu.mutable_data<paddle::platform::float16>(gpu_place);
278

Y
Yu Yang 已提交
279 280 281
  GetBlas<paddle::platform::float16>(context).GEMM(
      false, false, m, n, k, static_cast<paddle::platform::float16>(1), a, 3,
      b + 1, 4, static_cast<paddle::platform::float16>(1), c + 1, 4);
282

283
  paddle::framework::TensorCopySync(input3_gpu, cpu_place, &input3);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
}

TEST(math_function, gemm_trans_cublas_fp32) {
303 304 305 306 307 308
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;
309

310 311 312
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
Q
qijun 已提交
313 314 315 316

  int m = 2;
  int n = 3;
  int k = 3;
317
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
318 319
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
320
  float* input2_ptr = input2.mutable_data<float>({4, 3}, cpu_place);
Q
qijun 已提交
321 322
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
323
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
324 325 326
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

327 328 329
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input2, gpu_place, &input2_gpu);
  paddle::framework::TensorCopySync(input3, gpu_place, &input3_gpu);
Q
qijun 已提交
330 331
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
332
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
333

Y
Yu Yang 已提交
334 335
  GetBlas<float>(context).GEMM(false, true, m, n, k, 1, a, 3, b + 3, 3, 1,
                               c + 1, 4);
Q
qijun 已提交
336

337
  paddle::framework::TensorCopySync(input3_gpu, cpu_place, &input3);
Q
qijun 已提交
338

339
  context.Wait();
Q
qijun 已提交
340 341 342 343 344 345 346 347
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
348 349 350
}

TEST(math_function, gemm_trans_cublas_fp16) {
351 352 353 354 355 356
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;
357

358 359 360
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
361

K
Kexin Zhao 已提交
362 363 364 365 366
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

367 368 369
  int m = 2;
  int n = 3;
  int k = 3;
370 371
  paddle::platform::float16* input1_ptr =
      input1.mutable_data<paddle::platform::float16>({2, 3}, cpu_place);
372
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
373 374
  paddle::platform::float16* input2_ptr =
      input2.mutable_data<paddle::platform::float16>({4, 3}, cpu_place);
375 376
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11});
377 378
  paddle::platform::float16* input3_ptr =
      input3.mutable_data<paddle::platform::float16>({2, 4}, cpu_place);
379 380
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

381 382 383 384 385 386 387
  paddle::framework::TensorCopySync(input1, gpu_place, &input1_gpu);
  paddle::framework::TensorCopySync(input2, gpu_place, &input2_gpu);
  paddle::framework::TensorCopySync(input3, gpu_place, &input3_gpu);
  paddle::platform::float16* a = input1_gpu.data<paddle::platform::float16>();
  paddle::platform::float16* b = input2_gpu.data<paddle::platform::float16>();
  paddle::platform::float16* c =
      input3_gpu.mutable_data<paddle::platform::float16>(gpu_place);
388

Y
Yu Yang 已提交
389 390 391
  GetBlas<paddle::platform::float16>(context).GEMM(
      false, true, m, n, k, static_cast<paddle::platform::float16>(1), a, 3,
      b + 3, 3, static_cast<paddle::platform::float16>(1), c + 1, 4);
392

393
  paddle::framework::TensorCopySync(input3_gpu, cpu_place, &input3);
394 395 396 397 398 399 400 401 402 403

  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
Q
qijun 已提交
404
}
405 406 407

template <typename T>
void GemvTest(int m, int n, bool trans) {
408 409 410
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
411

412 413 414
  paddle::platform::CPUPlace cpu_place;
  paddle::platform::CUDAPlace gpu_place(0);
  paddle::platform::CUDADeviceContext context(gpu_place);
415 416 417 418 419

  T* data_a = mat_a.mutable_data<T>({m, n}, cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, cpu_place);

420 421 422
  paddle::framework::Tensor g_mat_a;
  paddle::framework::Tensor g_vec_b;
  paddle::framework::Tensor g_vec_c;
423 424 425
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), gpu_place);
426 427 428 429 430 431 432 433

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

434 435
  paddle::framework::TensorCopySync(mat_a, gpu_place, &g_mat_a);
  paddle::framework::TensorCopySync(vec_b, gpu_place, &g_vec_b);
436

437
  paddle::operators::math::gemv<paddle::platform::CUDADeviceContext, T>(
438 439 440
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

441
  paddle::framework::TensorCopySync(g_vec_c, cpu_place, &vec_c);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}