conv_transpose_op.h 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
16
#include <vector>
Y
Yi Wang 已提交
17 18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/vol2col.h"
C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
33
  Conv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
34 35
};

C
chengduoZH 已提交
36 37
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
38
  Conv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
39 40
};

C
chengduoZH 已提交
41
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
42 43 44
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
45 46 47 48

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
C
chengduoZH 已提交
49 50
};

C
chengduoZH 已提交
51
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
52 53 54
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
55 56 57 58

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
C
chengduoZH 已提交
59 60
};

Q
QI JUN 已提交
61
template <typename DeviceContext, typename T>
62
class GemmConvTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
63 64 65 66 67 68 69 70
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
71
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
72
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
C
chengduoZH 已提交
73 74
    // groups will alway be disabled in conv2dtranspose.

C
chengduoZH 已提交
75
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
76

C
chengduoZH 已提交
77
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
78
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
79
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
80 81 82 83 84
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
85 86 87 88 89 90 91
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = output->dims()[1];
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
92
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
93 94

    // use col_matrix_shape in the gemm calculation
95
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
96
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
97 98 99 100 101 102 103 104 105 106

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

107 108 109
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape =
        framework::slice_ddim(output->dims(), 1, output->dims().size());
C
chengduoZH 已提交
110

111 112 113 114 115
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
116 117 118
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
119 120
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
121
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
Q
QI JUN 已提交
122
    set_zero(dev_ctx, output, static_cast<T>(0));
C
chengduoZH 已提交
123

Q
QI JUN 已提交
124 125
    math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
    math::Col2VolFunctor<DeviceContext, T> col2vol;
C
chengduoZH 已提交
126

127 128
    // convolution transpose: gemm + col2im or col2vol (similar to conv-backward
    // on input)
C
chengduoZH 已提交
129
    for (int i = 0; i < batch_size; i++) {
130
      // batch with size (m, h * w) or (m, d * h * w)
C
chengduoZH 已提交
131 132
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

133
      // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
C
chengduoZH 已提交
134 135 136
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
137
      // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
Y
Yu Yang 已提交
138
      blas.MatMul(filter, true, input_batch, false, &col_matrix);
C
chengduoZH 已提交
139

C
chengduoZH 已提交
140
      if (data_dim == 2U) {
141 142
        // col2im: col_matrix -> dy
        // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
143 144 145
        col2im(dev_ctx, col, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
C
chengduoZH 已提交
146
               &output_batch);
C
chengduoZH 已提交
147
      } else if (data_dim == 3U) {
148 149
        // col2vol: col_matrix -> dy
        // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
Q
QI JUN 已提交
150
        col2vol(dev_ctx, col, dilations, strides, paddings, &output_batch);
151
      }
C
chengduoZH 已提交
152 153 154 155
    }
  }
};

Q
QI JUN 已提交
156
template <typename DeviceContext, typename T>
157
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

171 172
    if ((!input_grad) && (!filter_grad)) return;

C
chengduoZH 已提交
173 174
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
175
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
C
chengduoZH 已提交
176

C
chengduoZH 已提交
177
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
178

C
chengduoZH 已提交
179
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
180
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
181
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
182 183 184 185 186
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
187 188 189 190 191 192 193
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = output_grad->dims()[1];
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
194
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
195

196 197
    // use col_matrix_shape in the gemm calculation
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
198
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
199

200 201 202
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
                                              output_grad->dims().size());
C
chengduoZH 已提交
203

204 205
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
C
chengduoZH 已提交
206

207 208
    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
209 210 211 212 213
    filter.Resize(filter_matrix_shape);

    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
Q
QI JUN 已提交
214
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
215
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
216 217 218 219 220 221
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
222 223 224 225
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
226
      Tensor filter_grad_;
Q
QI JUN 已提交
227
      math::SetConstant<DeviceContext, T> set_zero;
C
chengduoZH 已提交
228

Q
QI JUN 已提交
229 230
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
231

C
chengduoZH 已提交
232 233 234 235 236
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
      }
      if (filter_grad) {  // filter size (m, c, k_h, k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
237
        set_zero(dev_ctx, filter_grad, static_cast<T>(0));
C
chengduoZH 已提交
238 239
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
240 241
      }

C
chengduoZH 已提交
242 243
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
244 245 246
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

C
chengduoZH 已提交
247
        if (data_dim == 2U) {
248 249
          // im2col: dy -> col matrix
          // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
250
          im2col(dev_ctx, output_grad_batch, dilations, strides,
C
chengduoZH 已提交
251 252 253
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
254
        } else if (data_dim == 3U) {
255 256
          // vol2col: dy -> col_matrix
          // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
Q
QI JUN 已提交
257 258
          vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings,
                  &col);
259
        }
C
chengduoZH 已提交
260

C
chengduoZH 已提交
261 262 263 264 265 266
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
267
          // or
C
chengduoZH 已提交
268 269
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
Y
Yu Yang 已提交
270
          blas.MatMul(filter, false, col_matrix, false, &input_grad_batch);
C
chengduoZH 已提交
271 272 273 274 275
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
276 277
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          // or
C
chengduoZH 已提交
278 279
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
Y
Yu Yang 已提交
280
          blas.MatMul(in_batch, false, col_matrix, true, &filter_grad_);
C
chengduoZH 已提交
281
        }
C
chengduoZH 已提交
282 283 284 285 286 287
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle